Skip to main content

Journal for Biophysical Chemistry

Melting and interdigitation of microstructured solid supported membranes quantified by imaging ellipsometry

Abstract

The phase transition of individually addressable microstructured lipid bilayers was investigated by means of noncontact imaging ellipsometry. Two-dimensional membrane compartments were created on silicon substrates by micromolding in capillaries and the phase transition of supported dimyristoylphosphadiylcholine DMPC and dipentadecoylphosphatidylcholine DiC15PC membranes was determined measuring area expansion and thickness of the bilayer as a function of temperature, ethanol concentration, and cholesterol content. Apart from measuring the thermotropic behavior of DMPC on glass slides and silicon wafers, the authors were able to visualize the reversible induction of an interdigitated phase by partitioning of ethanol into the microstructured lipid bilayers. Interdigitation induced by addition of ethanol was measured as a function of cholesterol content and shifts of the main phase transition temperature T M of microstructured DiC15PC were quantified as a function of ethanol concentration. They observed that cholesterol abolishes interdigitation at higher concentrations and found a biphasic behavior of T M as a function of ethanol concentration in good accordance to what is known from vesicles in solution.

References

  1. A. Janshoff and C. Steinem, Anal. Bioanal. Chem. 385, 433 (2006).

    Article  CAS  Google Scholar 

  2. M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  3. E. Reimhult, F. Höök, and B. Kasemo, Langmuir 19, 1681 (2003).

    Article  CAS  Google Scholar 

  4. E. Reimhult, M. Zäch, F. Höök, and B. Kasemo, Langmuir 22, 3313 (2006).

    Article  CAS  Google Scholar 

  5. F. Richter, G. Rapp, and L. Finegold, Phys. Rev. E 63, 051914 (2001).

    Article  CAS  Google Scholar 

  6. R. P. Richter and A. R. Brisson, Biophys. J. 88, 3422 (2005).

    Article  CAS  Google Scholar 

  7. R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005).

    Article  CAS  Google Scholar 

  8. H. Schönherr, J. M. Johnson, P. Lenz, C. W. Frank, and S. G. Boxer, Langmuir 20, 11600 (2004).

    Article  Google Scholar 

  9. K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, and J. Heberle, J. Am. Chem. Soc. 126, 16199 (2004).

    Article  CAS  Google Scholar 

  10. V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhäusser, W. Knoll, and I. Koeper, Biophys. J. 89, 1780 (2005).

    Article  CAS  Google Scholar 

  11. M. A. Cooper, J. Mol. Recognit. 17, 286 (2004).

    Article  CAS  Google Scholar 

  12. B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, L. Wieczorek, B. Raguse, and R. J. Pace, Nature (London) 387, 580 (1997).

    Article  CAS  Google Scholar 

  13. J. Drexler and C. Steinem, J. Phys. Chem. B 107, 11245 (2003).

    Article  CAS  Google Scholar 

  14. G. Elender, M. Kühner, and E. Sackmann, Biosens. Bioelectron. 11, 565 (1996).

    Article  CAS  Google Scholar 

  15. G. Favero, L. Capanella, S. Cavallo, A. D’Annibale, M. Perrella, E. Mattei, and T. Ferri (unpublished).

  16. K. Fendler, M. Klingenberg, G. Leblanc, J. J. H. H. M. DePont, B. L. Kelety, W. Dörner, and E. Bamberg, in Ultrathin Electrochemical Chemo- and Biosensors, edited by V. M. Mirsky Springer, Berlin, 2004, pp. 331–349.

    Google Scholar 

  17. F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, Biophys. J. 87, 3213 (2004).

    Article  CAS  Google Scholar 

  18. M. Goryll, S. J. Wilk, G. M. Laws, T. J. Thornton, S. M. Goodnick, M. Saranti, J. Tang, and R. S. Eisenberg, Superlattices Microstruct. 34, 451 (2003).

    Article  CAS  Google Scholar 

  19. S. Gritsch, P. Nollert, F. Jähnig, and E. Sackmann, Langmuir 14, 3118 (1998).

    Article  CAS  Google Scholar 

  20. W. Knoll, K. Morigaki, R. Naumann, B. Sacca, S. Schiller, and E.-K. Sinner, in Ultrathin Electrochemical Chemo- and Biosensors, edited by V. M. Mirsky Springer, Berlin, 2004, pp. 239–253.

    Google Scholar 

  21. H. Lang, C. Duschl, and H. Vogel, Langmuir 10, 197 (1994).

    Article  CAS  Google Scholar 

  22. C. Steinem, H.-J. Galla, and A. Janshoff, Phys. Chem. Chem. Phys. 2, 4580 (2000).

    Article  CAS  Google Scholar 

  23. C. Steinem, A. Janshoff, H.-J. Galla, and S. Manfred, Bioelectrochem. Bioenerg. 42, 213 (1997).

    Article  Google Scholar 

  24. C. Steinem, A. Janshoff, W.-P. Ulrich, M. Sieber, and H.-J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

    Article  Google Scholar 

  25. C. Steinem, A. Janshoff, K. von dem Bruch, K. Reihs, J. Goossens, and H.-J. Galla, Bioelectrochem. Bioenerg. 45, 17 (1998).

    Article  CAS  Google Scholar 

  26. T. Stora, J. H. Lakey, and H. Vogel, Angew. Chem., Int. Ed. 38, 389 (1999).

    Article  CAS  Google Scholar 

  27. T. Yang, S.-Y. Jung, H. Mao, and P. S. Cremer, Anal. Chem. 73, 165 (2001).

    Article  CAS  Google Scholar 

  28. M. a. Holden, S.-Y. Jung, T. Yang, E. T. Castellana, and P. S. Cremer, J. Am. Chem. Soc. 126, 6512 (2004).

    Article  CAS  Google Scholar 

  29. A. Janshoff and S. Künneke, Eur. Biophys. J. 29, 549 (2000).

    Article  CAS  Google Scholar 

  30. S. Schuy and A. Janshoff, ChemPhysChem 7, 1207 (2006).

    Article  CAS  Google Scholar 

  31. S. Künneke and A. Janshoff, Angew. Chem., Int. Ed. 41, 314 (2002).

    Article  Google Scholar 

  32. S. Schuy and A. Janshoff, J. Colloid Interface Sci. 295, 93 (2006).

    Article  CAS  Google Scholar 

  33. S. Faiß, S. Schuy, D. Weiskopf, C. Steinem, and A. Janshoff, J. Phys. Chem. B 111, 13979 (2007).

    Article  Google Scholar 

  34. E. S. Rowe, Biochemistry 22, 3299 (1983).

    Article  CAS  Google Scholar 

  35. S. A. Simon and T. J. McIntosh, Biochim. Biophys. Acta 773, 169 (1984).

    Article  CAS  Google Scholar 

  36. J. L. Slater and C.-H. Huang, Prog. Lipid Res. 27, 325 (1988).

    Article  CAS  Google Scholar 

  37. E. S. Rowe, Biochim. Biophys. Acta 813, 321 (1985).

    Article  CAS  Google Scholar 

  38. J. Mou, J. Yang, C. Huang, and Z. Shao, Biochemistry 33, 9981 (1994).

    Article  CAS  Google Scholar 

  39. J. M. Sturtevant, Proc. Natl. Acad. Sci. U.S.A. 79, 3963 (1982).

    Article  CAS  Google Scholar 

  40. L. Löbbecke and G. Cevc, Biochim. Biophys. Acta 1237, 59 (1995).

    Article  Google Scholar 

  41. N. Pappayee and A. K. Mishra, Photochem. Photobiol. 73, 573 (2001).

    Article  CAS  Google Scholar 

  42. M. C. Howland, A. W. Szmodis, B. Sanii, and A. N. Parikh, Biophys. J. 92, 1306 (2007).

    Article  CAS  Google Scholar 

  43. Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).

    Article  CAS  Google Scholar 

  44. T. Heimburg, Biochim. Biophys. Acta 1415, 147 (1998).

    Article  CAS  Google Scholar 

  45. J. F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H. I. Petrache, and R. M. Suter, Biophys. J. 70, 1419 (1996).

    Article  CAS  Google Scholar 

  46. F. Tokumasu, A. J. Jin, and J. A. Dvorak, J. Electron Microsc. 51, 1 (2002).

    Article  CAS  Google Scholar 

  47. P. W. M. Van Dijck, B. De Kruijff, P. A. M. M. Aarts, A. J. Verkleij, and J. De Gier, Biochim. Biophys. Acta 506, 183 (1978).

    Article  Google Scholar 

  48. D. Marsh, A. Watts, and P. F. Knowles, Biochim. Biophys. Acta 465, 500 (1977).

    Article  CAS  Google Scholar 

  49. G. Cevc and D. Marsh, Phospholipid Bilayers: Physical Principles and Models Wiley-Interscience, New York, (1987).

    Google Scholar 

  50. N. Kahya and P. Schwille, J. Fluoresc. 16, 671 (2006).

    Article  CAS  Google Scholar 

  51. F. Yarrow, T. J. H. Vlugt, J. P. J. M. van der Eerden, and M. M. E. Snel, J. Cryst. Growth 275, e1417 (2005).

    Article  CAS  Google Scholar 

  52. A. Charrier and F. Thibaudau, Biophys. J. 89, 1094 (2005).

    Article  CAS  Google Scholar 

  53. Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86, 3783 (2004).

    Article  CAS  Google Scholar 

  54. A. F. Xie and S. Granick, Nat. Mater. 1, 129 (2002).

    Article  CAS  Google Scholar 

  55. A. Miszta, B. van Deursen, R. Schoufs, M. Hof, and W. T. Hermens, Langmuir 24, 19 (2008).

    Article  CAS  Google Scholar 

  56. E. S. Rowe and J. M. Campion, Biophys. J. 67, 1888 (1994).

    Article  CAS  Google Scholar 

  57. C. Trandum, P. Westh, K. Jorgensen, and O. G. Mouritsen, Biophys. J. 78, 2486 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Janshoffa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gedig, M., Faiß, S. & Janshoffa, A. Melting and interdigitation of microstructured solid supported membranes quantified by imaging ellipsometry. Biointerphases 3, FA51–FA58 (2008). https://doi.org/10.1116/1.2901179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2901179