Skip to main content

Journal for Biophysical Chemistry

Development of molecular simulation methods to accurately represent protein-surface interactions: The effect of pressure and its determination for a system with constrained atoms

Abstract

When performing molecular dynamics simulations for a system with constrained (fixed) atoms, traditional isobaric algorithms (e.g., NPT simulation) often cannot be used. In addition, the calculation of the internal pressure of a system with fixed atoms may be highly inaccurate due to the nonphysical nature of the atomic constraints and difficulties in accurately defining the volume occupied by the unconstrained atoms in the system. The inability to properly set and control pressure can result in substantial problems for the accurate simulation of condensed-phase systems if the behavior of the system (e.g., peptide/protein adsorption) is sensitive to pressure. To address this issue, the authors have developed an approach to accurately determine the internal pressure for a system with constrained atoms. As the first step in this method, a periodically extendable portion of the mobile phase of the constrained system (e.g., the solvent atoms) is used to create a separate unconstrained system for which the pressure can be accurately calculated. This model system is then used to create a pressure calibration plot for an intensive local effective virial parameter for a small volume cross section or “slab” of the system. Using this calibration plot, the pressure of the constrained system can then be determined by calculating the virial parameter for a similarly sized slab of mobile atoms. In this article, the authors present the development of this method and demonstrate its application using the CHARMM molecular simulation program to characterize the adsorption behavior of a peptide in explicit water on a hydrophobic surface whose lattice spacing is maintained with atomic constraints. The free energy of adsorption for this system is shown to be dramatically influenced by pressure, thus emphasizing the importance of properly maintaining the pressure of the system for the accurate simulation of protein-surface interactions.

References

  1. A. R. Leach, Molecular Modelling: Principles and Applications, 2nd ed. (Pearson Education, Harlow, UK, 2001), pp. 165–170 and 303–351.

    Google Scholar 

  2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, UK, 1987), pp. 1–32 and 46–49.

    Google Scholar 

  3. A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

    Article  CAS  Google Scholar 

  4. A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).

    Article  CAS  Google Scholar 

  5. Y. Sun and R. A. Latour, J. Comput. Chem. 27, 1908 (2006).

    Article  CAS  Google Scholar 

  6. R. A. Latour, Curr. Opin. Solid State Mater. Sci. 4, 413 (1999).

    Article  CAS  Google Scholar 

  7. G. E. Wnek and G. L. Bowlin, Encyclopedia of Biomaterials and Biomedical Engineering, 2nd ed. (Informa Healthcare, New York, 2008), Vol. 1, pp. 270–284.

    Google Scholar 

  8. K. Wilson, S. J. Stuart, A. Garcia, and R. A. Latour, J. Biomed. Mater. Res. Part A 69A, 686 (2004).

    Article  CAS  Google Scholar 

  9. M. Agashe, V. Raut, S. J. Stuart, and R. A. Latour, Langmuir 21, 1103 (2005).

    Article  CAS  Google Scholar 

  10. R. A. Latour and L. L. Hench, Biomaterials 23, 4633 (2002).

    Article  CAS  Google Scholar 

  11. C. E. Nordgren, D. J. Tobias, M. L. Klein, and J. K. Blasie, Biophys. J. 83, 2906 (2002).

    Article  CAS  Google Scholar 

  12. F. Wang, S. J. Stuart, and R. A. Latour, BioInterphases 3, 9 (2008).

    Article  Google Scholar 

  13. C. P. O'Brien, S. J. Stuart, D. A. Bruce, and R. A. Latour, Langmuir 24, 14115 (2008).

    Article  Google Scholar 

  14. G. Collier, N. A. Vellore, R. A. Latour, and S. J. Stuart, BioInterphases 4, 57 (2009).

    Article  CAS  Google Scholar 

  15. X. F. Li, C. P. O'Brien, G. Collier, N. A. Vellore, F. Wang, R. A. Latour, D. A. Bruce, and S. J. Stuart, J. Chem. Phys. 127, 164116 (2007).

    Article  Google Scholar 

  16. A. D. MacKerell et al., J. Phys. Chem. B 102, 3586 (1998).

    Article  CAS  Google Scholar 

  17. A. D. Mackerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).

    Article  CAS  Google Scholar 

  18. N. A. Vellore, J. A. Yancey, G. Collier, R. A. Latour, and S. J. Stuart, Langmuir 26, 7396 (2010).

    Article  CAS  Google Scholar 

  19. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  CAS  Google Scholar 

  20. S. Nosé and M. L. Klein, Mol. Phys. 50, 1055 (1983).

    Article  Google Scholar 

  21. P. V. Hobbs, Ice Physics (Clarendon, Oxford, UK, 1974), pp. 346–348.

    Google Scholar 

  22. G. Hummer, S. Garde, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, Proc. Natl. Acad. Sci. U.S.A. 95, 1552 (1998).

    Article  CAS  Google Scholar 

  23. S. W. Rick, J. Phys. Chem. B 104, 6884 (2000).

    Article  CAS  Google Scholar 

  24. T. Ghosh, A. E. Garcia, and S. Garde, J. Am. Chem. Soc. 123, 10997 (2001).

    Article  CAS  Google Scholar 

  25. Y. Sun, B. N. Dominy, and R. A. Latour, J. Comput. Chem. 28, 1883 (2007).

    Article  CAS  Google Scholar 

  26. A. Wallqvist, J. Chem. Phys. 96, 1655 (1992).

    Article  CAS  Google Scholar 

  27. H. Heinz, W. Paul, and K. Binder, Phys. Rev. E 72, 066704 (2005).

    Article  Google Scholar 

  28. H. Heinz, Mol. Simul. 33, 747 (2007).

    Article  CAS  Google Scholar 

  29. B. R. Brooks et al., J. Comput. Chem. 30, 1545 (2009).

    Article  CAS  Google Scholar 

  30. C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles, and R. C. Salvarezza, J. Phys.: Condens. Matter 18, R867 (2006).

    Article  CAS  Google Scholar 

  31. Y. Wei and R. A. Latour, Langmuir 24, 6721 (2008).

    Article  CAS  Google Scholar 

  32. Y. Wei and R. Latour, Langmuir 25, 5637 (2009).

    Article  CAS  Google Scholar 

  33. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials 21, 1823 (2000).

    Article  CAS  Google Scholar 

  34. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).

    Article  CAS  Google Scholar 

  35. W. L. Jorgensen, J. Chem. Phys. 77, 4156 (1982).

    Article  CAS  Google Scholar 

  36. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  37. K. Vanommeslaeghe et al., J. Comput. Chem. 31, 671 (2010).

    CAS  Google Scholar 

  38. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).

    Article  CAS  Google Scholar 

  39. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).

    Article  CAS  Google Scholar 

  40. S. Nosé, Mol. Phys. 52, 255 (1984).

    Article  Google Scholar 

  41. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996).

    Article  CAS  Google Scholar 

  42. M. Mezei and D. Beveridge, Ann. N.Y. Acad. Sci. 482, 1 (1986).

    Article  CAS  Google Scholar 

  43. Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).

    Article  CAS  Google Scholar 

  44. M. Feig, J. Karanicolas, and C. L. Brooks, J. Mol. Graphics Modell. 22, 377 (2004).

    Article  CAS  Google Scholar 

  45. G. Marc and W. G. McMillan, Adv. Chem. Phys. 58, 209 (1985).

    Article  CAS  Google Scholar 

  46. J. J. Erpenbeck and W. W. Wood, in Statistical Mechanics B: Modern Theoretical Chemistry, edited by B. J. Berne (Plenum, New York, 1977), Vol. 6, pp. 1–41.

    Google Scholar 

  47. D. Brown and S. Neyertz, Mol. Phys. 84, 577 (1995).

    Article  CAS  Google Scholar 

  48. M. J. Louwerse and E. J. Baerends, Chem. Phys. Lett. 421, 138 (2006).

    Article  CAS  Google Scholar 

  49. A. P. Thompson, S. J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107 (2009).

    Article  Google Scholar 

  50. H. Bekker, E. J. Dijkstra, M. K. R. Renardus, and H. J. C. Berendsen, Mol. Simul. 14, 137 (1995).

    Article  CAS  Google Scholar 

  51. P. H. Hünenberger, J. Chem. Phys. 116, 6880 (2002).

    Article  Google Scholar 

  52. B. Oliva and P. H. Hunenberger, J. Chem. Phys. 116, 6898 (2002).

    Article  CAS  Google Scholar 

  53. R. G. Winkler, H. Morawitz, and D. Y. Yoon, Mol. Phys. 75, 669 (1992).

    Article  CAS  Google Scholar 

  54. R. G. Winkler and R. Hentschke, J. Chem. Phys. 99, 5405 (1993).

    Article  CAS  Google Scholar 

  55. R. G. Winkler, J. Chem. Phys. 117, 2449 (2002).

    Article  CAS  Google Scholar 

  56. R. L. C. Akkermans and G. Ciccotti, J. Phys. Chem. B 108, 6866 (2004).

    Article  CAS  Google Scholar 

  57. D. H. Tsai, J. Chem. Phys. 70, 1375 (1979).

    Article  Google Scholar 

  58. W. Smith and P. M. Rodger, The pressure in systems with frozen atoms, in Collaborative Computational Projects 5 (CCP5) (2002), see http:// www.ccp5.ac.uk/infoweb/wsmith22/wsmith22.pdf.

  59. J. C. Phillips et al., J. Comput. Chem. 26, 1781 (2005).

    Article  CAS  Google Scholar 

  60. D. A. Case et al., J. Comput. Chem. 26, 1668 (2005).

    Article  CAS  Google Scholar 

  61. R. R. Netz, Curr. Opin. Colloid Interface Sci. 9, 192 (2004).

    Article  CAS  Google Scholar 

  62. D. Schwendel, T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Steitz, and F. Schreiber, Langmuir 19, 2284 (2003).

    Article  CAS  Google Scholar 

  63. E. Paci, Biochim. et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1595, 185 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yancey, J.A., Vellore, N.A., Collier, G. et al. Development of molecular simulation methods to accurately represent protein-surface interactions: The effect of pressure and its determination for a system with constrained atoms. Biointerphases 5, 85–95 (2010). https://doi.org/10.1116/1.3493470

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.3493470