Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Probing surfaces with single-polymer atomic force microscope experiments

Article metrics

  • 567 Accesses

  • 5 Citations

Abstract

In the past 15 years atomic force microscope (AFM) based force spectroscopy has become a versatile tool to study inter- and intramolecular interactions of single polymer molecules. Irreversible coupling of polymer molecules between the tip of an AFM cantilever and the substrate allows one to study the stretching response up to the high force regime of several nN. For polymers that glide or slip laterally over the surface with negligible friction, on the other hand, the measured force profiles exhibit plateaus which allow one to extract the polymer adsorption energies. Long-term stable polymer coatings of the AFM tips allow for the possibility of repeating desorption experiments from solid supports with individual molecules many times, yielding good sampling statistics and thus reliable estimates for adsorption energies. In combination with recent advances in theoretical modeling, a detailed picture of the conformational statistics, backbone elasticity, and the adsorption characteristics of single polymer molecules is obtained.

References

  1. 1

    U. Lemmer, Polym. Adv. Technol. 9, 476 (1998).

  2. 2

    H. C. F. Martens, O. Hilt, H. B. Brom, P. W. M. Blom, and J. N. Huiberts, Phys. Rev. Lett. 87, 086601 (2001).

  3. 3

    W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).

  4. 4

    F. Oosawa, Polyelectrolytes (Dekker, New York, 1971).

  5. 5

    5 J. Israelachvilli, Intermolecular and Surface Forces (Academic, New York, 1992).

  6. 6

    H. Dautzenberg, W. Jaeger, B. P. J. Ktz, C. Seidel, and D. Stscherbind, Polyelectrolytes: Formation, Characterization and Application (Hanser, Munich, 1994).

  7. 7

    S. Förster and M. Schmidt, Adv. Polym. Sci. 120, 51 (1995).

  8. 8

    G. J. Fleer, M. A. CohenStuart, J. M. H. M. Scheutjens, T. Gasgove, and B. Vincent, Polymers at Interface (Academic, London, 1995).

  9. 9

    R. R. Netz and D. Andelman, Phys. Rep. 380, 1 (2003).

  10. 10

    P. H. Corkhill, A. S. Trevett, and B. J. Tighe, Proc. Inst. Mech. Eng., Part A 204, 147 (1990).

  11. 11

    T. T. Hesselink, J. Colloid Interface Sci. 60, 448 (1977).

  12. 12

    G. J. Fleer and J. Lyklema, J. Colloid Interface Sci. 167, 228 (1974).

  13. 13

    T. Matsumoto and Y. Adachi, J. Colloid Interface Sci. 204, 328 (1998).

  14. 14

    D. Horn and F. Linkart, edited by Roberts (Blackie Academic & Professional, Glasgow, 1996).

  15. 15

    S. Mann, Nature (London) 332, 119 (1988).

  16. 16

    S. Mann, J. Webb, R. J. P. Williams, Biomineralization: Chemical and Biochemical Perspectives (VCH, Weinheim, 1989).

  17. 17

    L. Addadi and S. Weiner, Angew. Chem. 104, 159 (1992).

  18. 18

    L. Qi, H. Cölfen, and M. Antonietti, Angew. Chem. 112, 617 (2000).

  19. 19

    J. Y. Wong, J. Majewsky, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith, Biophys. J. 77, 1445 (1999).

  20. 20

    J. Schmitt, T. Grünewald, K. Kjaer, P. Pershan, G. Decher, and M. Lösche, Macromolecules 26, 7058 (1993).

  21. 21

    J. Rädler, I. Koltover, T. Salditt, and C. Safinya, Science 275, 810 (1997).

  22. 22

    P. G. Hartley and P. J. Scales, Langmuir 14, 6948 (1998).

  23. 23

    F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, Langmuir 14, 4559 (1998).

  24. 24

    H. Clausen-Schauman and H. E. Gaub, Langmuir 15, 8246 (1999).

  25. 25

    Y. Kamiyama and J. Israelachvilli, Macromolecules 25, 5081 (1992).

  26. 26

    M. A. G. Dahlgren and P. M. Claesson, Prog. Colloid Polym. Sci. 93, 206 (1993).

  27. 27

    X. Châtelier, T. J. Senden, and J. M. di Meglio, Europhys. Lett. 41, 303 (1998).

  28. 28

    T. Hugel, M. Grosholz, H. Clausen-Schaumann, A. Pfau, H. E. Gaub, and M. Seitz, Macromolecules 34, 1039 (2001).

  29. 29

    M. Seitz, C. Friedsam, W. Jöstl, T. Hugel, and H. E. Gaub, Chem Phys Chem 4, 986 (2003).

  30. 30

    S. A. Sukhishvili, A. Dhinojwala, and S. Granick, Langmuir 15, 8474 (1999).

  31. 31

    31 J. DeRouchey, R. R. Netz, and J. O. Raedler, Eur. Phys. J. E 16, 17 (2005).

  32. 32

    B. J. Haupt, T. J. Senden, and E. M. Sevick, Langmuir 18, 2174 (2002).

  33. 33

    R. R. Netz and J.-F. Joanny, Macromolecules 32, 9013 (1999).

  34. 34

    J.-L. Barrat and J.-F. Joanny, Adv. Chem. Phys. 94, 1 (1996).

  35. 35

    C. Fleck, R. R. Netz, and H. H. von Grnberg, Biophys. J. 82, 76 (2002).

  36. 36

    A. Shafir, D. Andelman, and R. R. Netz, J. Chem. Phys. 119, 2355 (2003).

  37. 37

    R. R. Netz and D. Andelman, Adsorbed and Grafted Polymers at Equilibrium (Marcel Dekker, New York, 2000).

  38. 38

    M. Muthukumar, J. Chem. Phys. 86, 7230 (1987).

  39. 39

    J.-F. Joanny, M. Castelnovo, and R. R. Netz, J. Phys.: Condens. Matter 12, A1 (2000).

  40. 40

    C. Y. Kong and M. Muthukumar, J. Chem. Phys. 109, 1522 (1998).

  41. 41

    J.-L. Barrat and J.-F. Joanny, Europhys. Lett. 24, 333 (1993).

  42. 42

    A. V. Dobryin, A. Deshkovski, and M. Rubinstein, Macromolecules 34, 3421 (2001).

  43. 43

    C. Holm, J. F. Joanny, K. Kremer, R. R. Netz, P. Reineker, C. Seidel, T. A. Vilgis, and R. G. Winkler, Adv. Polym. Sci. 166, 67 (2004).

  44. 44

    H. Ahrens, S. Föerster, C. A. Helm, N. A. Kumar, A. Naji, R. R. Netz, and C. Seidel, J. Phys. Chem. B 108, 16870 (2004).

  45. 45

    M. Manghi and R. R. Netz, Eur. Phys. J. E 14, 67 (2004).

  46. 46

    H. J. Kreuzer, Chin. J. Phys. (Taipei) 43, 249 (2005).

  47. 47

    Handbook of Micro/Nano Tribology, 1st Ed., edited by B. Bushan (CRC, Boca Raton, FL, 1995).

  48. 48

    K. Kendall, Science 263, 1720 (1994).

  49. 49

    H. A. Rinia, J. W. Boots, R. A. Kik, M. M. E. Snel, R. A. Demel, J. A. Killian, J. P. van der Eerden, and B. de Kruijff, Biochemistry 41, 2814 (2002).

  50. 50

    H. A. Rinia, M. M. E. Snel, J. P. van der Eerden, and B. de Kruijff, FEBS Lett. 501, 92 (2001).

  51. 51

    M. Seitz, C. K. Park, J. Y. Wong, and J. Israelachvili, Langmuir 17, 4616 (2001).

  52. 52

    S. Mann and H. E. Gaub, Science 270, 1480 (1995).

  53. 53

    C. Gliss, H. Clausen-Schaumann, R. Gnther, S. Odenbach, O. Randl, and T. M. Bayerl, Biophys. J. 74, 2443 (1998).

  54. 54

    F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Müller, Science 288, 143 (2000).

  55. 55

    D. J. Müller, M. Kessler, F. Oesterhelt, C. Müller, D. Oesterhelt, and H. E. Gaub, Biophys. J. 83, 36321 (2002).

  56. 56

    T. E. Fisher, S. F. Oberhauser, M. Carrion-Vazquez, P. E. Marszalek, and J. M. Fernandez, Trends Biochem. Sci. 24, 379 (1999).

  57. 57

    J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. H. Thomas, Jr., Biophys. J. 71, 3350 (1996).

  58. 58

    S. Sharma, S. Bharadwaj, A. Surolia, and S. K. Podder, Biochem. J. 333, 539 (1998).

  59. 59

    A. Homola and A. A. Robertson, J. Colloid Interface Sci. 312, 286 (1976).

  60. 60

    D. M. LeNeveau, R. P. Rand, and V. A. Parsegian, Nature (London) 259, 601 (1976).

  61. 61

    D. Tabor and R. H. S. Winterton, Proc. R. Soc. London, Ser. A 312, 435 (1969).

  62. 62

    J. Israeachvili, J. Colloid Interface Sci. 44, 259 (1973).

  63. 63

    J. Israelachvili, Acc. Chem. Res. 20, 415 (1987).

  64. 64

    T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D. Rugar, Appl. Phys. Lett. 71, 288 (1997).

  65. 65

    A. Kishino and T. Yanagida, Nature (London) 334, 74 (1988).

  66. 66

    S. B. Smith, L. Finzi, and C. Bustamante, Science 258, 1122 (1992).

  67. 67

    J.-F. Allemand, These de doctorat, Ecole Normale Superieure, France 1997.

  68. 68

    T. R. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette, Science 271, 1835 (1996).

  69. 69

    G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

  70. 70

    G. Binnig and H. Rohrer, Rev. Mod. Phys. 59, 615 (1987).

  71. 71

    F. Ohnesorge and G. Binnig, Science 260, 1451 (1993).

  72. 72

    K. D. Jandt, Mater. Sci. Eng., R. 21, 221 (1998).

  73. 73

    M. Radmacher, IEEE Eng. Med. Biol. Mag. 16, 47 (1997).

  74. 74

    M. Rief, F. Oesterhelt, B. Heymann, and H. E. Gaub, Science 275, 1295 (1997).

  75. 75

    E.-L. Florin, V. T. Moy, and H. E. Gaub, Science 264, 415 (1994).

  76. 76

    H. Heinzelmann, E. Meier, H. Rudin, and H. H. Güntherodt, Force Microscopy in Scanning Tunneling Microscopy and Related Methods (Kluwer-Academic, Amsterdam, 1990).

  77. 77

    P. K. Hansma et al., Appl. Phys. Lett. 64, 1738 (1994).

  78. 78

    H. G. Hansma and J. H. Hoh, Annu. Rev. Biophys. Biomol. Struct. 23, 115 (1994).

  79. 79

    M. B. Viani et al., Rev. Sci. Instrum. 70, 4300 (1999).

  80. 80

    G. U. Lee, L. A. Chris, and R. J. Colton, Science 266, 771 (1994).

  81. 81

    A. Noy, D. V. Vezenov, and C. M. Lieber, Annu. Rev. Mater. Sci. 27, 381 (1997).

  82. 82

    A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, Nature (London) 348, 346 (1990).

  83. 83

    M. P. Sheetz, Laser Tweezers in Cell Biology (Academic, New York, 1997).

  84. 84

    S. M. Block, Nature (London) 360, 493 (1992).

  85. 85

    S. Chu, Sci. Am. 71 (1992).

  86. 86

    K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).

  87. 87

    R. Alon, D. A. Hammer, and T. A. Springer, Nature (London) 374, 539 (1995).

  88. 88

    G. Kaplanski, C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, M.-C. Alessi, S. Kaplanski, and P. Bongrand, Biophys. J. 64, 1922 (1993).

  89. 89

    D. Kwong, D. F. J. Tees, and H. L. Goldsmith, Biophys. J. 71, 1115 (1996).

  90. 90

    D. F. J. Tees, O. Coenen, and H. L. Goldsmith, Biophys. J. 65, 1318 (1993).

  91. 91

    D. F. J. Tees and H. L. Goldsmith, Biophys. J. 71, 1102 (1996).

  92. 92

    S. P. Tha, J. Shuster, and H. L. Goldsmith, Biophys. J. 50, 1117 (1986).

  93. 93

    E. Evans, K. Ritchie, and R. Merkel, Biophys. J. 68, 2580 (1995).

  94. 94

    D. A. Simson, F. Ziemann, M. Strigl, and R. Merkel, Biophys. J. 74, 2080 (1998).

  95. 95

    N. H. Thomson, M. Fritz, M. Radmacher, C. F. Schmidt, and P. K. Hansma, Biophys. J. 70, 2421 (1996).

  96. 96

    T. Strunz, K. Oroszlan, R. Shafer, and H.-J. Güntherodt, Proc. Natl. Acad. Sci. U.S.A. 96, 11277 (1999).

  97. 97

    D. Krüger, H. Fuchs, R. Rousseau, D. Marx, and M. Parrinello, Phys. Rev. Lett. 89, 186402 (2002).

  98. 98

    J. F. Allemand, D. Bensimon, L. Jullien, A. Bensimon, and V. Croquette, Biophys. J. 73, 2064 (1997).

  99. 99

    A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).

  100. 100

    A. Janshoff, M. Neitzert, Y. Oberdörfer, and H. Fuchs, Angew. Chem. 112, 3346 (2000).

  101. 101

    U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H.-J. Gntherodt, Biophys. J. 70, 2437 (1996).

  102. 102

    W. Dettmann, M. Grandbois, S. Andr, M. Benoit, A. K. Wehle, H. Kaltner, H.-J. Gabius, and H. E. Gaub, Arch. Biochem. Biophys. 383, 157 (2000).

  103. 103

    M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H. E. Gaub, Science 283, 1727 (1999).

  104. 104

    W. F. Heinz and J. H. Hoh, Trends Biotechnol. 17, 143 (1999).

  105. 105

    A. Janshoff, M. Neitzert, Y. Oberdörfer, and H. Fuchs, Angew. Chem., Int. Ed. Engl. 112, 3346 (2000).

  106. 106

    H. Clausen-Schaumann, M. Seitz, R. Krautbauer, and H. Gaub, Curr. Opin. Chem. Biol. 4, 524 (2000).

  107. 107

    G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir 10, 354 (1994).

  108. 108

    H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, Biophys. J. 78, 1997 (2000).

  109. 109

    P. E. Marszalek, A. F. Oberhauser, Y. P. Pang, and J. M. Fernandez, Nature (London) 396, 661 (1998).

  110. 110

    M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Science 276, 1109 (1997).

  111. 111

    M. S. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, Science 276, 1112 (1997).

  112. 112

    A. F. Oberhauser, P. E. Marszalek, H. P. Erickson, and J. M. Fernandez, Nature (London) 393, 181 (1998).

  113. 113

    M. Rief, M. Gautel, A. Schemmel, and H. E. Gaub, Biophys. J. 75, 3008 (1998).

  114. 114

    P. E. Marszalek, H. Lu, H. B. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten, and J. M. Fernandez, Nature (London) 402, 100 (1999).

  115. 115

    M. Carrion-Vazquez, A. F. Oberhauser, S. B. Fowler, P. E. Marszalek, S. E. Broedel, J. Clarke, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 96, 3694 (1999).

  116. 116

    P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, and F. Caron, Science 271, 792 (1996).

  117. 117

    H. Dietz and M. Rief, Proc. Natl. Acad. Sci. U.S.A. 101, 16192 (2004).

  118. 118

    I. Schwaiger, A. Kardinal, M. Schleicher, A. A. Noegel, and M. Rief, Nat. Struct. Biol. 11, 81 (2004).

  119. 119

    D. K. Klimov and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 96, 6166 (1999).

  120. 120

    M. Rief, J. Pascual, M. Saraste, and H. E. Gaub, J. Mol. Biol. 286, 553 (1999).

  121. 121

    R. Krautbauer, H. Clausen-Schaumann, and H. E. Gaub, Angew. Chem., Int. Ed. Engl. 39, 3912 (2000).

  122. 122

    G. I. Bell, Science 200, 618 (1978).

  123. 123

    E. Evans, D. Berk, and A. Leung, Biophys. J. 59, 838 (1991).

  124. 124

    E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).

  125. 125

    S. Israilev, S. Stepaniants, M. Balsera, Y. Ono, and K. Schulten, Biophys. J. 72, 1568 (1997).

  126. 126

    H. Grubmüller, B. Heymann, and P. Tavan, Science 271, 997 (1996).

  127. 127

    R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Nature (London) 397, 50 (1999).

  128. 128

    E. Evans and F. Ludwig, J. Phys.: Condens. Matter 12A, 315 (2000).

  129. 129

    E. Evans, Annu. Rev. Biophys. Biomol. Struct. 30, 105 (2001).

  130. 130

    E. Evans, Biophys. Chem. 82, 83 (1999).

  131. 131

    E. Evans, Faraday Discuss. 111, 1 (1998).

  132. 132

    B. Heymann and H. Grubmüller, Phys. Rev. Lett. 84, 6126 (2000).

  133. 133

    B. Heymann and H. Grubmüller, Biophys. J. 81, 1295 (2001).

  134. 134

    B. Heymann and H. Grubmüller, Chem. Phys. Lett. 303, 1 (1999).

  135. 135

    M. Balsera, S. Stepaniants, S. Israilev, Y. Oono, and K. J. Schulten, Biophys. J. 73, 1281 (1997).

  136. 136

    S. Boresch and M. Karplus, J. Mol. Biol. 254, 801 (1995).

  137. 137

    J. Shillcock and U. Seifert, Phys. Rev. E 57, 7301 (1998).

  138. 138

    U. Seifert, Phys. Rev. Lett. 84, 2750 (2000).

  139. 139

    G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U.S.A. 98, 3658 (2001).

  140. 140

    X. Châtelier, T. J. Senden, and J. M. di Meglio, Europhys. Lett. 41, 303 (1998).

  141. 141

    M. Conti, Y. Bustanji, G. Falini, P. Ferruti, S. Stefoni, and B. Samori, ChemPhysChem 2, 610 (2001).

  142. 142

    R. W. Tillmann, M. Radmacher, and H. E. Gaub, Appl. Phys. Lett. 60, 3111 (1992).

  143. 143

    M. Ludwig, W. Dettmann, and H. E. Gaub, Biophys. J. 72, 445 (1997).

  144. 144

    S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky, and P. K. Hansma, Langmuir 10, 4409 (1994).

  145. 145

    C. Möller, M. Allen, V. Elings, A. Engel, and D. Müller, Biophys. J. 77, 1150 (1999).

  146. 146

    J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, Rev. Sci. Instrum. 64, 403 (1993).

  147. 147

    H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).

  148. 148

    F. Oesterhelt, M. Rief, and H. E. Gaub, New J. Phys. 1, 6.1 (1999).

  149. 149

    D. Y. C. Chan and R. G. Horn, J. Chem. Phys. 83, 5311 (1985).

  150. 150

    M. B. Viani, T. E. Schaffer, A. Chand, M. Rief, H. E. Gaub, and P. K. Hansma, J. Appl. Phys. 86, 2258 (1999).

  151. 151

    A. F. Oberhauser, P. K. Hansma, M. Carrion-Vazquez, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 98, 468 (2001).

  152. 152

    J. V. Macpherson and P. R. Unwin, Anal. Chem. 72, 276 (2000).

  153. 153

    C. E. Jones, J. V. Macpherson, and P. R. Unwin, J. Phys. Chem. B 104, 2351 (2000).

  154. 154

    J. V. Macpherson and P. R. Unwin, Anal. Chem. 73, 550 (2001).

  155. 155

    T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, Science 296, 1103 (2002).

  156. 156

    N. B. Holland, T. Hugel, G. Neuert, D. Oesterhelt, L. Moroder, M. Seitz, and H. E. Gaub, Macromolecules 36, 2015 (2003).

  157. 157

    A. Serr and R. R. Netz, Europhys. Lett. (in press, 2005).

  158. 158

    B. Haupt, J. Ennis, and E. M. Sevick, Langmuir 15, 3886 (1999).

  159. 159

    C. Friedsam, A. K. Wehle, F. Khner, and H. E. Gaub, J. Phys.: Condens. Matter 15, S1709 (2003).

  160. 160

    S. Löefas, B. Johnsson, A. Edström, S. Hansson, G. Lindquist, R.-H. Müeller-Hillgren, and L. Stigh, Biosens. Bioelectron. 10, 813 (1995).

  161. 161

    J. E. Butler, L. Ni, R. Nessler, K. S. Joshi, M. Suter, B. Rosenberg, J. Chang, W. R. Brown, and L. A. Cantarero, J. Immunol. Methods 150, 77 (1992).

  162. 162

    J.-Y. Shao and R. M. Hochmuth, Biophys. J. 77, 587 (1999).

  163. 163

    L. Schmitt, C. Dietrich, and R. Tampe, J. Am. Chem. Soc. 116, 8485 (1994).

  164. 164

    C. M. Kacher, I. K. Weiss, R. J. Stewart, C. F. Schmidt, P. K. Hansma, M. Radmacher, and M. Fritz, Eur. Biophys. J. 28, 611 (2000).

  165. 165

    P. Silberzan, L. Leger, D. Ausserre, and J. J. Benattar, Langmuir 7, 1647 (1991).

  166. 166

    A. Barrat, P. Silberzan, L. Bourdieu, and D. Chatenay, Europhys. Lett. 20, 633 (1992).

  167. 167

    C. T. Tripp and M. L. Hair, Langmuir 8, 1120 (1992).

  168. 168

    D. L. Angst and G. W. Simmons, Langmuir 7, 2236 (1991).

  169. 169

    A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).

  170. 170

    R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc. 105, 4481 (1983).

  171. 171

    G. M. Whitesides and P. E. Laibinis, Langmuir 6, 87 (1990).

  172. 172

    L. H. Dubois and R. G. Nuzzo, Annu. Rev. Phys. Chem. 43, 437 (1992).

  173. 173

    C. Friedsam, A. del Campo Bcares, U. Jonas, H. E. Gaub, and M. Seitz, ChemPhysChem 5, 388 (2004).

  174. 174

    174 C. Friedsam, A. del Campo Bcares, U. Jonas, M. Seitz, and H. E. Gaub, New J. Phys. 6, 9 (2004).

  175. 175

    R. Schweiss, P. B. Welzel, C. Werner, and W. Knoll, Langmuir 17, 4304 (2001).

  176. 176

    C. Friedsam, H. E. Gaub, and R. R. Netz, Europhys. Lett. (in press).

  177. 177

    S. S. Shiratori and M. F. Rubner, Macromolecules 33, 4213 (2000).

  178. 178

    F. Bordi et al., Macromolecules 35, 7031 (2002).

  179. 179

    G. Koper and M. Borkovec, J. Phys. Chem. B 105, 6666 (2001).

  180. 180

    Y. Burak and R. R. Netz, J. Phys. Chem. B 108, 4840 (2004).

  181. 181

    A. F. Xie and S. Granick, Nat. Mater. 1, 129 (2002).

  182. 182

    H. J. Kreuzer, R. L. C. Wang, and M. Grunze, J. Am. Chem. Soc. 125, 8384 (2003).

  183. 183

    R. R. Netz, J. Phys.: Condens. Matter 15, S239 (2003).

  184. 184

    U. Jonas, A. del Campo, C. Krüger, G. Glasser, and D. Boos, PNAS 99, 5034 (2002).

  185. 185

    P. J. Flory, Statistical Mechanics of Chain Molecules (Hanser, Muenchen, 1988).

  186. 186

    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics(Oxford University Press, Oxford, 1998).

  187. 187

    O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).

  188. 188

    C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science 265, 1599 (1994).

  189. 189

    F. Oesterhelt, M. Rief, and H. E. Gaub, New J. Phys. 1, 6.1 (1999).

  190. 190

    J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).

  191. 191

    M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, Biophys. J. 72, 1335 (1997).

  192. 192

    D. W. Urry et al., Philos. Trans. R. Soc. London, Ser. B 357, 169 (2002).

  193. 193

    L. Livadaru, R. R. Netz, and H. J. Kreuzer, Macromolecules 36, 3732 (2003).

  194. 194

    A. Lamura, T. W. Burkhardt, and G. Gompper, Phys. Rev. E 64, 061801 (2001); C. Storm and P. C. Nelson, ibid. 67, 051906 (2003).

  195. 195

    H. J. Kreuzer and M. Grunze, Europhys. Lett. 55, 640 (2001).

  196. 196

    J. C. L. Hagemann, R. J. Meier, M. Heinemann, and R. A. de Groot, Macromolecules 30, 5953 (1997).

  197. 197

    F. Bartha, F. Bogar, A. Peeters, C. van Alsenoy, and V. van Doren, Phys. Rev. B 62, 10142 (2000).

  198. 198

    L. Livadaru, R. R. Netz, and H. J. Kreuzer, J. Chem. Phys. 118, 1404 (2003).

  199. 199

    T. Hugel, M. Rief, M. Seitz, H. E. Gaub, and R. R. Netz, Phys. Rev. Lett. 94, 048301 (2005).

  200. 200

    M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).

Download references

Author information

Correspondence to R. R. Netz.

Rights and permissions

Reprints and Permissions

About this article