Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Robust hybrid thin films that incorporate lamellar phospholipid bilayer assemblies and transmembrane proteins

Abstract

This study describes facile methods based on sol-gel processing for the formation of robust thin films that incorporate phospholipid bilayer membranes and transmembrane proteins as multilamellar assemblies in cross-linked silica matrices. Transmission electron microscopy and x-ray diffraction were used to examine the lamellar structure of the hybrid thin films containing 1, 2-dioleyl-sn-glycero-3-phospoethanolamine (DOPE), an unsaturated lipid, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), a saturated lipid. While the d spacing measured for DOPE containing films varied (from 35 to 48 Å) depending on the amount of DOPE added to the coating solution (10-1 wt %), similar changes were not observed for the films containing saturated lipid, DMPC (d spacing 43 Å). Addition of purple membrane containing bacteriorhodopsin to the DOPE/silica coating solution led to the formation of multilamellar vesicle-like structures within the thin films. Mild sonication of these solutions containing the purple membrane prior to coating led to the formation thin films with planar multilamellar structures that exhibit uniform d spacing. The study further investigates the effects of incorporation of gramicidin and sonication on the structure of hybrid films and speculates on the eventual application of thin films prepared in this manner.

References

  1. 1

    D. L. Nelson andM. M. Cox, Lehninger Principles of Biochemistry, 4th ed. (W. H. Freeman and Company, San Francisco, 2004), Chap. 11.

    Google Scholar 

  2. 2

    T. Lian andR. J. Y. Ho, J. Pharm. Sci. 90, 667 (2001).

    Article  CAS  Google Scholar 

  3. 3

    D. Ottenbacher, R. Kindervater, P. Gimmel, B. Klee, F. Jahnig, andW. Gopel, Sens. Actuators B 6, 192 (1992).

    Article  Google Scholar 

  4. 4

    H. Bayley, O. Braha, andLQ. Gu, Adv. Mater. (Weinheim, Ger.) 12, 139 (2000).

    Article  CAS  Google Scholar 

  5. 5

    C. Nicolini, Biosens. Bioelectron. 10, 105 (1995).

    Article  CAS  Google Scholar 

  6. 6

    L. Y. Su, F. M. Hawkridge, andM. C. Rohten, Chem. Biodiversity. 1, 281 (2004).

    Article  Google Scholar 

  7. 7

    Y. F. Lu, Y. Yang, A. Sellinger, J. M. Lu, J. M. Huang, H. Y. Fan, R. Haddad, G. P. López, A. R. Burns, D. Y. Sasaki, J. Shelnutt, andC. J. Brinker, Nature London 411, 913 (2001).

    Article  Google Scholar 

  8. 8

    G. V. Rama Rao, G. P. López, J. Bravo, H. Pham, A. K. Datye, H. Xu, andT. L. Ward, Adv. Mater. (Weinheim, Ger.) 14, 1301 (2002).

    Article  Google Scholar 

  9. 9

    Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, andJ. I. Zink, Nature (London) 389, 364 (1997).

    Article  CAS  Google Scholar 

  10. 10

    N. R. B. Coleman andG. S. Attard, Microporous Mesoporous Mater. 44, 73 (2001).

    Article  Google Scholar 

  11. 11

    R. M. Garavito andS. Ferguson-Miller, J. Biol. Chem. 276, 32403 (2001).

    Article  CAS  Google Scholar 

  12. 12

    R. J. Philippot andF. Schuber, Liposomes as Tools in Basic Research and Industry (CRC, Boca Raton, FL, 1995), Chap. 5.

    Google Scholar 

  13. 13

    S. A. Yamanaka, D. H. Charych, D. A. Loy, andD. Y. Sasaki, Langmuir 13, 5049 (1997).

    Article  CAS  Google Scholar 

  14. 14

    H. K. Baca, PhD thesis, University of New Mexico, Albuquerque, New Mexico, 2005.

    Google Scholar 

  15. 15

    T. J. M. Luo, R. Soong, E. Lan, B. Dunn, andC. Montemagno, Nat. Mater. 5, 220 (2005).

    Article  Google Scholar 

  16. 16

    I. D. Alves, G. F. J. Salgado, Z. Salamon, M. F. Brown, G. Tollin, andV. J. Hruby, Biophys. J. 88, 198 (2005).

    Article  CAS  Google Scholar 

  17. 17

    J.-P. Cartailler andH. Luecke, Annu. Rev. Biophys. Biomol. Struct. 326, 1317 (2003).

    Google Scholar 

  18. 18

    J. K. Lanyi andA. Pohorille, Trends Biotechnol. 19, 140 (2001).

    Article  CAS  Google Scholar 

  19. 19

    K. Ishibashi, M. Kuwahara, andS. Sasaki, Rev. Physiol. Biochem. Pharmacol. 14, 1 (2000).

    Article  Google Scholar 

  20. 20

    S. M. Parsons, FASEB J. 14, 2423 (2000).

    Article  CAS  Google Scholar 

  21. 21

    G. S. Moeck andJ. W. Coulton, J. Mol. Microbiol. 28, 675 (1998).

    Article  CAS  Google Scholar 

  22. 22

    J. A. He, L. Samuelson, L. Li, J. Kumar, andS. K. Tripathy, Adv. Mater. Weinheim, Ger. 11, 435 (1999).

    Article  CAS  Google Scholar 

  23. 23

    C. Nicolini, V. Erokhin, S. Paddeu, andM. Sartore, Nanotechnology 9, 223 (1998).

    Article  CAS  Google Scholar 

  24. 24

    A. Finkelstein andO. S. Andersen, J. Membr. Biol. 59, 155 (1981).

    Article  CAS  Google Scholar 

  25. 25

    S. Yamaguchi, T. Hong, A. Waring, R. I. Lehrer, andM. Hong, Biochemistry 4, 9852 (2002).

    Article  Google Scholar 

  26. 26

    J. N. Israelachivili, Intermolecular & Surface Forces 2nd ed. (1992), Table 17.2.

  27. 27

    A. J. Karkamkar, S. S. Kim, S. D. Mahanti, and T. J. Pinnavaia, Adv. Funct. Mater. 14, 507 (2004).

    Article  CAS  Google Scholar 

  28. 28

    M. T. Bore, S. B. Rathod, T. L. Ward, and A. K. Datye, Langmuir 19, 256 (2003).

    Article  CAS  Google Scholar 

  29. 29

    C. G. Knight, Liposomes from Physical Structure to Therapeutic Applications (Elseiver/North-Holland Biomedical Press, Amsterdam, The Netherlands, 1981), Chap. 8.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, G., Atanassov, P. & López, G.P. Robust hybrid thin films that incorporate lamellar phospholipid bilayer assemblies and transmembrane proteins. Biointerphases 1, 6–10 (2006). https://doi.org/10.1116/1.2185654

Download citation