Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide

Article metrics

  • 472 Accesses

  • 38 Citations

Abstract

Thorough studies of protein interactions with stimulus responsive polymers are necessary to provide a better understanding of their applications in biosensors and biomaterials. In this study, protein behavior on a thermoresponsive polymer surface, plasma polymerized N-isopropyl acrylamide (ppNIPAM), is investigated using multiple characterization techniques above and below its lower critical solution temperature (LCST). Protein adsorption and binding affinity are probed using radiolabeled proteins. Protein activity is estimated by measuring the immunological activity of an antibody adsorbed onto ppNIPAM using surface plasmon resonance. Conformation/orientation of the proteins is probed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and principal component analysis (PCA) of the TOF-SIMS data. In this work, we find that at low protein solution concentrations, ppNIPAM-treated surfaces are low fouling below the LCST, but protein retentive above it. The protein adsorption isotherms demonstrate that apparent affinity between soluble protein molecules and the ppNIPAM surface are an order of magnitude lower at room temperature than at 37 °C. Although direct protein desorption is not observed in our study when the surface temperature drops below the LCST, the binding affinity of surface adsorbed protein with ppNIPAM is reduced, as judged by a detergent elution test. Furthermore, we demonstrated that proteins adsorbed onto ppNIPAM are functionally active, but the activity is better preserved at room temperature than 37 °C. The temperature dependent difference in protein activity as well as TOF-SIMS and PCA study suggest that proteins take different conformations/orientations after adsorption on ppNIPAM above and below the LCST.

References

  1. 1

    A. S. Hoffman, P. S. Stayton, O. Press, N. Murthy, C. A. Lackey, C. Cheung, F. Black, J. Campbell, N. Fausto, T. R. Kyriakides, and P. Bornstein, Polym. Adv. Technol. 13, 992 (2002).

  2. 2

    N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang, Annu. Rev. Biomed. Eng. 2, 9 (2000).

  3. 3

    J. Anzai, Bunseki Kagaku 50, 585 (2001).

  4. 4

    D. R. Jung, R. Kapur, T. Adams, K. A. Giuliano, M. Mrksich, H. G. Craighead, and D. L. Taylor, Crit. Rev. Biotechnol. 21, 111 (2001).

  5. 5

    X. Y. Jing, R. M. Li, P. Wang, J. Wang, Y. Yuan, and G. Y. Zhu, Chin. J. Anal. Chem. 27, 1462 (1999).

  6. 6

    T. Seki, Polym. J. (Tokyo, Jpn.) 36, 435 (2004).

  7. 7

    C. S. Kwok, P. D. Mourad, L. A. Crum, and B. D. Ratner, J. Biomed. Mater. Res. 57, 151 (2001).

  8. 8

    I. Roy and M. N. Gupta, Chem. Biol. 10, 1161 (2003).

  9. 9

    F. J. Schmitt, C. Park, J. Simon, H. Ringsdorf, and J. Israelachvili, Langmuir 14, 2838 (1998).

  10. 10

    L. Liang, P. C. Rieke, G. E. Fryxell, J. Liu, M. H. Engehard, and K. L. Alford, J. Phys. Chem. B 104, 11667 (2000).

  11. 11

    X. H. Cheng, H. E. Canavan, M. J. Stein, J. R. Hull, S. J. Kweskin, M. S. Wagner, G. A. Somorjai, D. G. Castner, and B. D. Ratner, Langmuir 21, 7833 (2005).

  12. 12

    G. B. Sigal, M. Mrksich, and G. M. Whitesides, J. Am. Chem. Soc. 120, 3464 (1998).

  13. 13

    M. Mrksich, Chem. Soc. Rev. 29, 267 (2000).

  14. 14

    T. G. Ruardy, J. M. Schakenraad, H. C. vanderMei, and H. J. Busscher, Surf. Sci. Rep. 29, 3 (1997).

  15. 15

    E. C. Cho, Y. D. Kim, and K. Cho, Polymer 45, 3195 (2004).

  16. 16

    D. Cunliffe, C. D. Alarcon, V. Peters, J. R. Smith, and C. Alexander, Langmuir 19, 2888 (2003).

  17. 17

    A. Yamazaki, F. M. Winnik, R. M. Cornelius, and J. L. Brash, Biochim. Biophys. Acta 1421, 103 (1999).

  18. 18

    D. Duracher, R. Veyret, A. Elaissari, and C. Pichot, Polym. Int. 53, 618 (2004).

  19. 19

    T. Taniguchi, D. Duracher, T. Delair, A. Elaissari, and C. Pichot, Colloids Surf., B 29, 53 (2003).

  20. 20

    H. Kawaguchi, K. Fujimoto, and Y. Mizuhara, Colloid Polym. Sci. 270, 53 (1992).

  21. 21

    D. Gospodarowicz, G. Greenburg, and C. R. Birdwell, Cancer Res. 38, 4155 (1978).

  22. 22

    Y. V. Pan, R. A. Wesley, R. Luginbuhl, D. D. Denton, and B. D. Ratner, Biomacromolecules 2, 32 (2001).

  23. 23

    X. H. Cheng, Y. B. Wang, Y. Hanein, K. F. Bohringer, and B. D. Ratner, J. Biomed. Mater. Res., Part A 70A, 159 (2004).

  24. 24

    R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials 21, 1823 (2000).

  25. 25

    J. A. Chinn, T. A. Horbett, B. D. Ratner, M. B. Schway, Y. Haque, and S. D. Hauschka, J. Colloid Interface Sci. 127, 67 (1989).

  26. 26

    Techniques of Biocompatibility Testing, edited by D. F. Williams (CRC Press, Boca Raton, FL, 1986).

  27. 27

    R. J. Rapoza and T. A. Horbett, J. Colloid Interface Sci. 136, 480 (1990).

  28. 28

    J. L. Bohnert and T. A. Horbett, J. Colloid Interface Sci. 111, 363 (1986).

  29. 29

    S. F. Chen, Q. M. Yu, L. Y. Li, C. L. Boozer, J. Homola, S. S. Yee, and S. Y. Jiang, J. Am. Chem. Soc. 124, 3395 (2002).

  30. 30

    S. F. Chen, L. Y. Liu, J. Zhou, and S. Y. Jiang, Langmuir 19, 2859 (2003).

  31. 31

    R. Michel, R. Luginbuhl, D. J. Graham, and B. D. Ratner, J. Vac. Sci. Technol. A 18, 1114 (2000).

  32. 32

    N. Xia, C. J. May, S. L. McArthur, and D. G. Castner, Langmuir 18, 4090 (2002).

  33. 33

    M. S. Wagner and D. G. Castner, Langmuir 17, 4649 (2001).

  34. 34

    J. E. Jackson, J. Quality Technol. 12, 201 (1980).

  35. 35

    S. Wold, K. Esbensen, and P. Geladi, Chemom. Intell. Lab. Syst. 2, 37 (1987).

  36. 36

    W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, J. Biomed. Mater. Res. 25, 1547 (1991).

  37. 37

    S. I. Ertel, B. D. Ratner, and T. A. Horbett, J. Colloid Interface Sci. 147, 433 (1991).

  38. 38

    F. Y. Lin, W. Y. Chen, R. C. Ruaan, and H. M. Huang, J. Chromatogr. A 872, 37 (2000).

  39. 39

    B. R. Young, W. G. Pitt, and S. L. Cooper, J. Colloid Interface Sci. 124, 28 (1988).

  40. 40

    H. Wu, Y. Fan, J. Sheng, and S. F. Sui, Eur. Biophys. J. 22, 201 (1993).

  41. 41

    C. G. Golander, Y. S. Lin, V. Hlady, and J. D. Andrade, Colloids Surf. 49, 289 (1990).

  42. 42

    H. Elwing, B. Ivarsson, and I. Lundstrom, Eur. J. Biochem. 156, 359 (1986).

  43. 43

    M. Malmsten, Colloids Surf., B 3, 297 (1995).

  44. 44

    D. Duracher, A. Elaissari, F. Mallet, and C. Pichot, Langmuir 16, 9002 (2000).

  45. 45

    M. Tanaka, A. Mochizuki, T. Motomura, K. Shimura, M. Onishi, and Y. Okahata, Colloids Surf., A 193, 145 (2001).

  46. 46

    A. Shiloach and D. Blankschtein, Langmuir 14, 1618 (1998).

  47. 47

    A. Elaissari and V. Bourrel, J. Magn. Magn. Mater. 225, 151 (2001).

  48. 48

    K. Yoshizako, Y. Akiyama, H. Yamanaka, Y. Shinohara, Y. Hasegawa, E. Carredano, A. Kikuchi, and T. Okano, Anal. Chem. 74, 4160 (2002).

  49. 49

    M. Okubo and H. Ahmad, Colloid Polym. Sci. 274, 112 (1996).

  50. 50

    D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, and B. C. Bunker, Science 301, 352 (2003).

  51. 51

    W. Norde, Adv. Colloid Interface Sci. 25, 267 (1986).

  52. 52

    A. W. P. Vermeer, M. Bremer, and W. Norde, Biochim. Biophys. Acta 1425, 1 (1998).

  53. 53

    C. F. Wertz and M. M. Santore, Langmuir 15, 8884 (1999).

  54. 54

    C. F. Wertz and M. M. Santore, Langmuir 17, 3006 (2001).

  55. 55

    H. Yoshioka, M. Mikami, T. Nakai, and Y. Mori, Polym. Adv. Technol. 6, 418 (1995).

  56. 56

    M. Yamato, C. Konno, A. Kushida, M. Hirose, M. Utsumi, A. Kikuchi, and T. Okano, Biomaterials 21, 981 (2000).

  57. 57

    H. E. Canavan, X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner, Langmuir (2004).

  58. 58

    C. A. C. Karlsson, M. C. Wahlgren, and A. C. Tragardh, Colloids Surf., B 6, 317 (1996).

  59. 59

    A. W. P. Vermeer, C. E. Giacomelli, and W. Norde, Biochim. Biophys. Acta 1526, 61 (2001).

  60. 60

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

  61. 61

    A. Gole, C. Dash, C. Soman, S. R. Sainkar, M. Rao, and M. Sastry, Bioconjugate Chem. 12, 684 (2001).

  62. 62

    A. Gole, C. Dash, V. Ramakrishnan, S. R. Sainkar, A. B. Mandale, M. Rao, and M. Sastry, Langmuir 17, 1674 (2001).

  63. 63

    A. Gole, C. Dash, A. B. Mandale, M. Rao, and M. Sastry, Anal. Chem. 72, 4301 (2000).

  64. 64

    M. Hanson, K. K. Unger, R. Denoyel, and J. Rouquerol, J. Biochem. Biophys. Methods 29, 283 (1994).

  65. 65

    R. Tzoneva, M. Heuchel, T. Groth, G. Altankov, W. Albrecht, and D. Paul, J. Biomater. Sci., Polym. Ed. 13, 1033 (2002).

  66. 66

    P. Warkentin, B. Walivaara, I. Lundstrom, and P. Tengvall, Biomaterials 15, 786 (1994).

  67. 67

    D. J. Fabriziushoman and S. L. Cooper, J. Biomater. Sci., Polym. Ed. 3, 27 (1991).

  68. 68

    M. S. Wagner, B. J. Tyler, and D. G. Castner, Anal. Chem. 74, 1824 (2002).

Download references

Author information

Correspondence to Buddy D. Ratner.

Rights and permissions

Reprints and Permissions

About this article