Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide

Abstract

Thorough studies of protein interactions with stimulus responsive polymers are necessary to provide a better understanding of their applications in biosensors and biomaterials. In this study, protein behavior on a thermoresponsive polymer surface, plasma polymerized N-isopropyl acrylamide (ppNIPAM), is investigated using multiple characterization techniques above and below its lower critical solution temperature (LCST). Protein adsorption and binding affinity are probed using radiolabeled proteins. Protein activity is estimated by measuring the immunological activity of an antibody adsorbed onto ppNIPAM using surface plasmon resonance. Conformation/orientation of the proteins is probed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and principal component analysis (PCA) of the TOF-SIMS data. In this work, we find that at low protein solution concentrations, ppNIPAM-treated surfaces are low fouling below the LCST, but protein retentive above it. The protein adsorption isotherms demonstrate that apparent affinity between soluble protein molecules and the ppNIPAM surface are an order of magnitude lower at room temperature than at 37 °C. Although direct protein desorption is not observed in our study when the surface temperature drops below the LCST, the binding affinity of surface adsorbed protein with ppNIPAM is reduced, as judged by a detergent elution test. Furthermore, we demonstrated that proteins adsorbed onto ppNIPAM are functionally active, but the activity is better preserved at room temperature than 37 °C. The temperature dependent difference in protein activity as well as TOF-SIMS and PCA study suggest that proteins take different conformations/orientations after adsorption on ppNIPAM above and below the LCST.

References

  1. 1

    A. S. Hoffman, P. S. Stayton, O. Press, N. Murthy, C. A. Lackey, C. Cheung, F. Black, J. Campbell, N. Fausto, T. R. Kyriakides, and P. Bornstein, Polym. Adv. Technol. 13, 992 (2002).

    Article  CAS  Google Scholar 

  2. 2

    N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang, Annu. Rev. Biomed. Eng. 2, 9 (2000).

    Article  CAS  Google Scholar 

  3. 3

    J. Anzai, Bunseki Kagaku 50, 585 (2001).

    Article  CAS  Google Scholar 

  4. 4

    D. R. Jung, R. Kapur, T. Adams, K. A. Giuliano, M. Mrksich, H. G. Craighead, and D. L. Taylor, Crit. Rev. Biotechnol. 21, 111 (2001).

    Article  CAS  Google Scholar 

  5. 5

    X. Y. Jing, R. M. Li, P. Wang, J. Wang, Y. Yuan, and G. Y. Zhu, Chin. J. Anal. Chem. 27, 1462 (1999).

    CAS  Google Scholar 

  6. 6

    T. Seki, Polym. J. (Tokyo, Jpn.) 36, 435 (2004).

    Article  CAS  Google Scholar 

  7. 7

    C. S. Kwok, P. D. Mourad, L. A. Crum, and B. D. Ratner, J. Biomed. Mater. Res. 57, 151 (2001).

    Article  CAS  Google Scholar 

  8. 8

    I. Roy and M. N. Gupta, Chem. Biol. 10, 1161 (2003).

    Article  CAS  Google Scholar 

  9. 9

    F. J. Schmitt, C. Park, J. Simon, H. Ringsdorf, and J. Israelachvili, Langmuir 14, 2838 (1998).

    Article  CAS  Google Scholar 

  10. 10

    L. Liang, P. C. Rieke, G. E. Fryxell, J. Liu, M. H. Engehard, and K. L. Alford, J. Phys. Chem. B 104, 11667 (2000).

    Article  CAS  Google Scholar 

  11. 11

    X. H. Cheng, H. E. Canavan, M. J. Stein, J. R. Hull, S. J. Kweskin, M. S. Wagner, G. A. Somorjai, D. G. Castner, and B. D. Ratner, Langmuir 21, 7833 (2005).

    Article  CAS  Google Scholar 

  12. 12

    G. B. Sigal, M. Mrksich, and G. M. Whitesides, J. Am. Chem. Soc. 120, 3464 (1998).

    Article  CAS  Google Scholar 

  13. 13

    M. Mrksich, Chem. Soc. Rev. 29, 267 (2000).

    Article  CAS  Google Scholar 

  14. 14

    T. G. Ruardy, J. M. Schakenraad, H. C. vanderMei, and H. J. Busscher, Surf. Sci. Rep. 29, 3 (1997).

    Article  Google Scholar 

  15. 15

    E. C. Cho, Y. D. Kim, and K. Cho, Polymer 45, 3195 (2004).

    Article  CAS  Google Scholar 

  16. 16

    D. Cunliffe, C. D. Alarcon, V. Peters, J. R. Smith, and C. Alexander, Langmuir 19, 2888 (2003).

    Article  CAS  Google Scholar 

  17. 17

    A. Yamazaki, F. M. Winnik, R. M. Cornelius, and J. L. Brash, Biochim. Biophys. Acta 1421, 103 (1999).

    Article  CAS  Google Scholar 

  18. 18

    D. Duracher, R. Veyret, A. Elaissari, and C. Pichot, Polym. Int. 53, 618 (2004).

    Article  CAS  Google Scholar 

  19. 19

    T. Taniguchi, D. Duracher, T. Delair, A. Elaissari, and C. Pichot, Colloids Surf., B 29, 53 (2003).

    Article  CAS  Google Scholar 

  20. 20

    H. Kawaguchi, K. Fujimoto, and Y. Mizuhara, Colloid Polym. Sci. 270, 53 (1992).

    Article  CAS  Google Scholar 

  21. 21

    D. Gospodarowicz, G. Greenburg, and C. R. Birdwell, Cancer Res. 38, 4155 (1978).

    CAS  Google Scholar 

  22. 22

    Y. V. Pan, R. A. Wesley, R. Luginbuhl, D. D. Denton, and B. D. Ratner, Biomacromolecules 2, 32 (2001).

    Article  CAS  Google Scholar 

  23. 23

    X. H. Cheng, Y. B. Wang, Y. Hanein, K. F. Bohringer, and B. D. Ratner, J. Biomed. Mater. Res., Part A 70A, 159 (2004).

    Article  CAS  Google Scholar 

  24. 24

    R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials 21, 1823 (2000).

    Article  CAS  Google Scholar 

  25. 25

    J. A. Chinn, T. A. Horbett, B. D. Ratner, M. B. Schway, Y. Haque, and S. D. Hauschka, J. Colloid Interface Sci. 127, 67 (1989).

    Article  CAS  Google Scholar 

  26. 26

    Techniques of Biocompatibility Testing, edited by D. F. Williams (CRC Press, Boca Raton, FL, 1986).

  27. 27

    R. J. Rapoza and T. A. Horbett, J. Colloid Interface Sci. 136, 480 (1990).

    Article  CAS  Google Scholar 

  28. 28

    J. L. Bohnert and T. A. Horbett, J. Colloid Interface Sci. 111, 363 (1986).

    Article  CAS  Google Scholar 

  29. 29

    S. F. Chen, Q. M. Yu, L. Y. Li, C. L. Boozer, J. Homola, S. S. Yee, and S. Y. Jiang, J. Am. Chem. Soc. 124, 3395 (2002).

    Article  CAS  Google Scholar 

  30. 30

    S. F. Chen, L. Y. Liu, J. Zhou, and S. Y. Jiang, Langmuir 19, 2859 (2003).

    Article  CAS  Google Scholar 

  31. 31

    R. Michel, R. Luginbuhl, D. J. Graham, and B. D. Ratner, J. Vac. Sci. Technol. A 18, 1114 (2000).

    Article  CAS  Google Scholar 

  32. 32

    N. Xia, C. J. May, S. L. McArthur, and D. G. Castner, Langmuir 18, 4090 (2002).

    Article  CAS  Google Scholar 

  33. 33

    M. S. Wagner and D. G. Castner, Langmuir 17, 4649 (2001).

    Article  CAS  Google Scholar 

  34. 34

    J. E. Jackson, J. Quality Technol. 12, 201 (1980).

    Google Scholar 

  35. 35

    S. Wold, K. Esbensen, and P. Geladi, Chemom. Intell. Lab. Syst. 2, 37 (1987).

    Article  CAS  Google Scholar 

  36. 36

    W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, J. Biomed. Mater. Res. 25, 1547 (1991).

    Article  CAS  Google Scholar 

  37. 37

    S. I. Ertel, B. D. Ratner, and T. A. Horbett, J. Colloid Interface Sci. 147, 433 (1991).

    Article  CAS  Google Scholar 

  38. 38

    F. Y. Lin, W. Y. Chen, R. C. Ruaan, and H. M. Huang, J. Chromatogr. A 872, 37 (2000).

    Article  CAS  Google Scholar 

  39. 39

    B. R. Young, W. G. Pitt, and S. L. Cooper, J. Colloid Interface Sci. 124, 28 (1988).

    Article  CAS  Google Scholar 

  40. 40

    H. Wu, Y. Fan, J. Sheng, and S. F. Sui, Eur. Biophys. J. 22, 201 (1993).

    Article  CAS  Google Scholar 

  41. 41

    C. G. Golander, Y. S. Lin, V. Hlady, and J. D. Andrade, Colloids Surf. 49, 289 (1990).

    Article  Google Scholar 

  42. 42

    H. Elwing, B. Ivarsson, and I. Lundstrom, Eur. J. Biochem. 156, 359 (1986).

    Article  CAS  Google Scholar 

  43. 43

    M. Malmsten, Colloids Surf., B 3, 297 (1995).

    Article  CAS  Google Scholar 

  44. 44

    D. Duracher, A. Elaissari, F. Mallet, and C. Pichot, Langmuir 16, 9002 (2000).

    Article  CAS  Google Scholar 

  45. 45

    M. Tanaka, A. Mochizuki, T. Motomura, K. Shimura, M. Onishi, and Y. Okahata, Colloids Surf., A 193, 145 (2001).

    Article  CAS  Google Scholar 

  46. 46

    A. Shiloach and D. Blankschtein, Langmuir 14, 1618 (1998).

    Article  CAS  Google Scholar 

  47. 47

    A. Elaissari and V. Bourrel, J. Magn. Magn. Mater. 225, 151 (2001).

    Article  CAS  Google Scholar 

  48. 48

    K. Yoshizako, Y. Akiyama, H. Yamanaka, Y. Shinohara, Y. Hasegawa, E. Carredano, A. Kikuchi, and T. Okano, Anal. Chem. 74, 4160 (2002).

    Article  CAS  Google Scholar 

  49. 49

    M. Okubo and H. Ahmad, Colloid Polym. Sci. 274, 112 (1996).

    Article  CAS  Google Scholar 

  50. 50

    D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, and B. C. Bunker, Science 301, 352 (2003).

    Article  CAS  Google Scholar 

  51. 51

    W. Norde, Adv. Colloid Interface Sci. 25, 267 (1986).

    Article  CAS  Google Scholar 

  52. 52

    A. W. P. Vermeer, M. Bremer, and W. Norde, Biochim. Biophys. Acta 1425, 1 (1998).

    Article  CAS  Google Scholar 

  53. 53

    C. F. Wertz and M. M. Santore, Langmuir 15, 8884 (1999).

    Article  CAS  Google Scholar 

  54. 54

    C. F. Wertz and M. M. Santore, Langmuir 17, 3006 (2001).

    Article  CAS  Google Scholar 

  55. 55

    H. Yoshioka, M. Mikami, T. Nakai, and Y. Mori, Polym. Adv. Technol. 6, 418 (1995).

    Article  CAS  Google Scholar 

  56. 56

    M. Yamato, C. Konno, A. Kushida, M. Hirose, M. Utsumi, A. Kikuchi, and T. Okano, Biomaterials 21, 981 (2000).

    Article  CAS  Google Scholar 

  57. 57

    H. E. Canavan, X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner, Langmuir (2004).

  58. 58

    C. A. C. Karlsson, M. C. Wahlgren, and A. C. Tragardh, Colloids Surf., B 6, 317 (1996).

    Article  CAS  Google Scholar 

  59. 59

    A. W. P. Vermeer, C. E. Giacomelli, and W. Norde, Biochim. Biophys. Acta 1526, 61 (2001).

    Article  CAS  Google Scholar 

  60. 60

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

    Article  CAS  Google Scholar 

  61. 61

    A. Gole, C. Dash, C. Soman, S. R. Sainkar, M. Rao, and M. Sastry, Bioconjugate Chem. 12, 684 (2001).

    Article  CAS  Google Scholar 

  62. 62

    A. Gole, C. Dash, V. Ramakrishnan, S. R. Sainkar, A. B. Mandale, M. Rao, and M. Sastry, Langmuir 17, 1674 (2001).

    Article  CAS  Google Scholar 

  63. 63

    A. Gole, C. Dash, A. B. Mandale, M. Rao, and M. Sastry, Anal. Chem. 72, 4301 (2000).

    Article  CAS  Google Scholar 

  64. 64

    M. Hanson, K. K. Unger, R. Denoyel, and J. Rouquerol, J. Biochem. Biophys. Methods 29, 283 (1994).

    Article  CAS  Google Scholar 

  65. 65

    R. Tzoneva, M. Heuchel, T. Groth, G. Altankov, W. Albrecht, and D. Paul, J. Biomater. Sci., Polym. Ed. 13, 1033 (2002).

    Article  CAS  Google Scholar 

  66. 66

    P. Warkentin, B. Walivaara, I. Lundstrom, and P. Tengvall, Biomaterials 15, 786 (1994).

    Article  CAS  Google Scholar 

  67. 67

    D. J. Fabriziushoman and S. L. Cooper, J. Biomater. Sci., Polym. Ed. 3, 27 (1991).

    Article  CAS  Google Scholar 

  68. 68

    M. S. Wagner, B. J. Tyler, and D. G. Castner, Anal. Chem. 74, 1824 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Buddy D. Ratner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, X., Canavan, H.E., Graham, D.J. et al. Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide. Biointerphases 1, 61–72 (2006). https://doi.org/10.1116/1.2187980

Download citation