Skip to main content

Journal for Biophysical Chemistry

Breaking bonds in the atomic force microscope: Extracting information

Abstract

A theoretical framework is developed to analyze molecular bond breaking in dynamic force spectroscopy using atomic force microscopy (AFM). An analytic expression of the observed bond breaking probability as a function of force is obtained in terms of the relevant physical parameters. Three different experimental realizations are discussed, in which (i) the force is increased linearly in time, and (ii) the AFM cantilever is moved at constant speed, and (iii) the force is held constant. We find that unique fitting of the bond parameters such as the potential depth and its width is possible only when data from rather different force-loading rates is used. The complications in the analysis of using the constant velocity mode arising from the intermediate polymer spacer are discussed at length.

References

  1. M. Kudera, C. Eschbaumer, H. E. Gaub, and U. S. Schubert, Adv. Funct. Mater. 13, 615 (2003).

    Article  CAS  Google Scholar 

  2. M. K. Beyer, J. Chem. Phys. 112, 7307 (2000).

    Article  CAS  Google Scholar 

  3. A. F. Oberhauser, P. K. Hansma, M. Carrion-Vasquez, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 98, 468 (2001).

    Article  CAS  Google Scholar 

  4. H. Grubmüller, B. Heymann, and P. Tavan, Science 271, 997 (1997).

    Article  Google Scholar 

  5. E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).

    Article  CAS  Google Scholar 

  6. H.-Y. Chen and Y.-P. Chu, Phys. Rev. E 71, 010901(R) (2005).

    Article  Google Scholar 

  7. P. M. Williams, Anal. Chim. Acta 479, 107 (2003).

    Article  CAS  Google Scholar 

  8. B. Heymann and H. Grubmüller, Phys. Rev. Lett. 84, 6126 (2000).

    Article  CAS  Google Scholar 

  9. H. J. Kreuzer, Chin. J. Phys. (Taipei) 43, 249 (2005).

    CAS  Google Scholar 

  10. M. Evstigneev and P. Reimann, Phys. Rev. E 68, 045103 (2003).

    Article  Google Scholar 

  11. C. Friedsam, A. K. Wehle, F. Kühner, and H. E. Gaub, J. Phys.: Condens. Matter 15, S1709 (2003).

    Article  Google Scholar 

  12. P. E. Marszalek, H. Li, A. F. Oberhauser, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 99, 4278 (2002).

    Article  CAS  Google Scholar 

  13. G. I. Bell, Science 200, 618 (1978).

    Article  CAS  Google Scholar 

  14. M. Schlierf, H. Li, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 101, 7299 (2004).

    Article  CAS  Google Scholar 

  15. H. J. Kreuzer and S. H. Payne, Phys. Rev. E 63, 021906 (2001).

    Article  CAS  Google Scholar 

  16. H. J. Kreuzer, S. H. Payne, and L. Livadaru, Biophys. J. 80, 2505 (2001).

    Article  CAS  Google Scholar 

  17. F. Hanke and H. J. Kreuzer, Phys. Rev. E 72, 031805 (2005).

    Article  Google Scholar 

  18. F. Oesterhelt, M. Rief, and H. E. Gaub, New J. Phys. 1, 6.1 (1999).

    Article  Google Scholar 

  19. H. J. Kreuzer and M. Grunze, Europhys. Lett. 55, 640 (2001).

    Article  CAS  Google Scholar 

  20. L. Livadaru and H. J. Kreuzer, Phys. Chem. Chem. Phys. 6, 3872 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jürgen Kreuzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanke, F., Jürgen Kreuzer, H. Breaking bonds in the atomic force microscope: Extracting information. Biointerphases 1, 11–17 (2006). https://doi.org/10.1116/1.2188519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2188519