Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Settlement behavior of swimming algal spores on gradient surfaces

Article metrics

  • 362 Accesses

  • 10 Citations

Abstract

When surfaces possessing gradients of surface energy are incubated with motile spores from the green seaweed Ulva, the spores attach on the hydrophilic part of the gradient in larger numbers than they do on the hydrophobic part. This result is opposite to the behavior of the spores observed on the homogeneous hydrophobic and hydrophic surfaces. The data suggest that the gradients have a direct and active influence on the spores, which may be due to the biased migration of the spores during the initial stages of surface sensing.

References

  1. 1

    H. S. Hayden, J. Blomster, C. A. Maggs, M. J. Stanhope, and J. R. Waaland, Eur. J. Phycol. 38, 277 (2003).

  2. 2

    M. E. Callow, J. A. Callow, J. D. Pickett-Heaps, and R. Wetherbee, J. Phycol. 33, 938 (1997).

  3. 3

    M. S. Stanley, M. E. Callow, and J. A. Callow, Planta 210, 61 (1999).

  4. 4

    J. A. Callow, M. S. Stanley, R. Wetherbee, and M. E. Callow, Biofouling 16, 141 (2000).

  5. 5

    J. A. Callow, M. P. Osborne, M. E. Callow, F. Baker, and A. M. Donald, Colloids Surf., B 27, 315 (2003).

  6. 6

    M. E. Callow, J. A. Callow, L. K. Ista, S. E. Coleman, A. C. Nolasco, and G. P. Lopez, Appl. Environ. Microbiol. 66, 3249 (2000).

  7. 7

    L. K. Ista, L. K, M. E. Callow, J. A. Finlay, S. E. Coleman, A. C. Nolasco, R. H. Simons, J. A. Callow, and G. P. Lopez, Appl. Environ. Microbiol. 70, 4151 (2004).

  8. 8

    M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, L. A. Feinberg, R. Baney, and J. A. Callow, Biofouling 18, 237 (2002).

  9. 9

    L. Hoipkemer-Wilson, J. F. Schumacher, M. L. Carman, A. L. Gibson, A. Feinberg, M. E. Callow, J. A. Finlay, J. A. Callow, and A. B. Brennan, Biofouling 20, 53 (2004).

  10. 10

    I. Joint, I. Tait, M. E. Callow, J. A. Callow, D. Milton, P. Williams, and M. Camara, Science 298, 120 (2002).

  11. 11

    G. L. Wheeler, K. Tait, A. Taylor, C. Brownlee, and I. Joint. Plant Cell and Environment 1365 (2006).

  12. 12

    S. B. Carter, Nature (London) 213, 256 (1967).

  13. 13

    M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).

  14. 14

    S. Daniel, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).

  15. 15

    S. Daniel and M. K. Chaudhury, Langmuir 18, 3404 (2002).

  16. 16

    J. A. Finlay, M. E. Callow, M. P. Schultz, G. W. Swain, and J. A. Callow, Biofouling 18, 251 (2002).

  17. 17

    A. J. Humphrey, J. A. Finlay, M. E. Pettit, M. S. Stanley, and J. A. Callow, J. Adhes. 81, 791 (2005).

  18. 18

    M. E. Callow, and J. A. Callow, Biofouling 15, 49 (2000).

  19. 19

    J. A. Callow, M. E. Callow, L. K. Ista, G. Lopez, and M. K. Chaudhury, J. R. Soc., Interface 2, 319 (2005).

  20. 20

    J. A. Finlay, M. E. Callow, L. K. Ista, G. P. Lopez, and J. A. Callow, Integr. Comp. Biol. 42, 1116 (2002).

  21. 21

    Ongoing studies at Lehigh University provided some evidence of the desorption of surface adsorbed alkylsiloxane molecules in water. In this particular study, drainage of thin water film is investigated on a glass slide or a silicon wafer, which has circular or rectangular shaped silanized patches. As the water film drains to a thickness of about 10–15 ώm, it ruptures. Examination of the optical interference fringes formed by the draining film as well as rupture dynamics and its scale dependence suggest that the alkylsiloxane molecules desorb more readily from the edges of the hydrophobic patches rather than its center.

Download references

Author information

Correspondence to M. K. Chaudhury.

Rights and permissions

Reprints and Permissions

About this article