Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Structural and kinetic properties of laterally stabilized, oligo(ethylene glycol)-containing alkylthiolates on gold: A modular approach

Abstract

The formation of highly ordered self-assembled monolayers (SAMs) on gold from an unusually long and linear compound HS(CH2)15CONH(CH2CH2O)6CH2CONH(CH2)15CH3 is investigated by contact angle goniometry, ex situ null ellipsometry, cyclic voltammetry and infrared reflection-absorption spectroscopy. The molecules are found to assemble in an upright position as a complete monolayer within 60 min. The overall structure of the SAM reaches equilibrium within 24 h as evidenced by infrared spectroscopy, although a slight improvement in water contact angles is observed over a period of a few weeks. The resulting SAM is 60 Å thick and it displays an advancing water contact angle of 112° and excellent electrochemical blocking characteristics with typical current densities about 20 times lower as compared to those observed for HS(CH2)15CH3 SAMs. The dominating crystalline phases of the supporting HS(CH2)15 and terminal (CH2)15CH3 alkyl portions, as well as the sealed oligo(ethylene glycol) (OEG) “core,” appear as unusually sharp features in the infrared spectra at room temperature. For example, the splitting seen for the CH3 stretching and CH2 scissoring peaks is normally only observed for conformationally trapped alkylthiolate SAMs at low temperatures and for highly crystalline polymethylenes. Temperature-programmed infrared spectroscopy in ultrahigh vacuum reveals a significantly improved thermal stability of the SAM under investigation, as compared to two analogous OEG derivatives without the extended alkyl chain. Our study points out the advantages of adopting a “modular approach” in designing novel SAM-forming compounds with precisely positioned in plane stabilizing groups. We demonstrate also the potential of using the above set of compounds in the fabrication of “hydrogel-like” arrays with controlled wetting properties for application in the ever-growing fields of protein and cell analysis, as well as for bioanalytical applications.

References

  1. 1

    M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (987).

    Article  Google Scholar 

  2. 2

    C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).

    CAS  Article  Google Scholar 

  3. 3

    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).

    CAS  Article  Google Scholar 

  5. 5

    J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 105, 1103 (2005).

    CAS  Google Scholar 

  6. 6

    W. Senaratne, L. Andruzzi, and C. K. Ober, Biomacromolecules 6, 2427 (2005).

    CAS  Article  Google Scholar 

  7. 7

    E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

    CAS  Article  Google Scholar 

  8. 8

    S. Svedhem, L. Ohberg, S. Borrelli, R. Valiokas, M. Andersson, S. Oscarson, S. C. T. Svensson, B. Liedberg, and P. Konradsson, Langmuir 18, 2848 (2002).

    CAS  Article  Google Scholar 

  9. 9

    C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

    CAS  Article  Google Scholar 

  10. 10

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    CAS  Article  Google Scholar 

  11. 11

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    CAS  Article  Google Scholar 

  12. 12

    T. Miyazawa, K. Fukushima, and Y. J. Ideguchi, J. Chem. Phys. 37, 2764 (1962).

    CAS  Article  Google Scholar 

  13. 13

    G. S. MacGlashan, Y. G. Andreev, and P. G. Bruce, Nature (London) 398, 792 (1999).

    CAS  Article  Google Scholar 

  14. 14

    K. M. Gattas-Asfura, Y. J. Zheng, M. Micic, M. J. Snedaker, X. J. Ji, G. D. Sui, J. Orbulescu, F. M. Andreopoulos, S. M. Pham, C. M. Wang, and R. Leblanc, J. Phys. Chem. B 107, 10464 (2003).

    CAS  Article  Google Scholar 

  15. 15

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

    CAS  Article  Google Scholar 

  16. 16

    D. J. Vanderah, C. W. Meuse, V. Silin, and A. L. Plant, Langmuir 14, 6916 (1998).

    CAS  Article  Google Scholar 

  17. 17

    D. J. Vanderah, C. P. Pham, S. K. Springer, V. Silin, and C. W. Meuse, Langmuir 16, 6527 (2000).

    CAS  Article  Google Scholar 

  18. 18

    D. J. Vanderah, G. Valincius, and C. W. Meuse, Langmuir 18, 4674 (2002).

    CAS  Article  Google Scholar 

  19. 19

    D. J. Vanderah, J. Arsenault, H. La, R. S. Gates, V. Silin, C. W. Meuse, and G. Valincius, Langmuir 19, 3752 (2003).

    CAS  Article  Google Scholar 

  20. 20

    D. J. Vanderah, R. S. Gates, V. Silin, D. N. Zeiger, J. T. Woodward, C. W. Meuse, G. Valincius, and B. Nickel, Langmuir 19, 2612 (2003).

    CAS  Article  Google Scholar 

  21. 21

    D. J. Vanderah, H. L. La, J. Naff, V. Silin, and K. A. Rubinson, J. Am. Chem. Soc. 126, 13639 (2004).

    CAS  Article  Google Scholar 

  22. 22

    D. J. Vanderah, T. Parr, V. Silin, C. W. Meuse, R. S. Gates, H. Y. La, and G. Valincius, Langmuir 20, 1311 (2004).

    CAS  Article  Google Scholar 

  23. 23

    R. Valiokas, S. Svedhem, M. Ostblom, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 105, 5459 (2001).

    CAS  Article  Google Scholar 

  24. 24

    R. Valiokas, M. Ostblom, S. Svedhem, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 106, 10401 (2002).

    CAS  Article  Google Scholar 

  25. 25

    J. Benesch, S. Svedhem, S. C. T. Svensson, R. Valiokas, B. Liedberg, and P. Tengvall, J. Biomater. Sci., Polym. Ed. 12, 581 (2001).

    CAS  Article  Google Scholar 

  26. 26

    D. Schwendel, R. Dahint, S. Herrwerth, M. Schloerholz, W. Eck, and M. Grunze, Langmuir 17, 5717 (2001).

    CAS  Article  Google Scholar 

  27. 27

    S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    CAS  Article  Google Scholar 

  28. 28

    L. Malysheva, A. Onipko, R. Valiokas, and B. Liedberg, J. Phys. Chem. A 109, 7788 (2005).

    CAS  Article  Google Scholar 

  29. 29

    L. Malysheva, A. Onipko, R. Valiokas, and B. Liedberg, Appl. Surf. Sci. 246, 372 (2005).

    CAS  Article  Google Scholar 

  30. 30

    S. Svedhem, C. A. Hollander, J. Shi, P. Konradsson, B. Liedberg, and S. C. T. Svensson, J. Org. Chem. 66, 4494 (2001).

    CAS  Article  Google Scholar 

  31. 31

    L. Bertilsson and B. Liedberg, Langmuir 9, 141 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Y. Zhou, R. Valiokas, and B. Liedberg, Langmuir 20, 6206 (2004).

    CAS  Article  Google Scholar 

  33. 33

    I. Engquist, I. Lundstrom, and B. Liedberg, J. Phys. Chem. 99, 12257 (1995).

    CAS  Article  Google Scholar 

  34. 34

    A. N. Parikh and D. L. Allara, J. Chem. Phys. 96, 927 (1992).

    CAS  Article  Google Scholar 

  35. 35

    L. Malysheva, Y. Klymenko, A. Onipko, R. Valiokas, and B. Liedberg, Chem. Phys. Lett. 370, 451 (2003).

    CAS  Article  Google Scholar 

  36. 36

    L. Malysheva, A. Onipko, R. Valiokas, and B. Liedberg, J. Phys. Chem. B 109, 13221 (2005).

    CAS  Article  Google Scholar 

  37. 37

    P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, J. Am. Chem. Soc. 113, 7152 (1991).

    CAS  Article  Google Scholar 

  38. 38

    R. G. Nuzzo, E. M. Korenic, and L. H. Dubois, J. Chem. Phys. 93, 767 (1990).

    CAS  Article  Google Scholar 

  39. 39

    I. Engquist and B. Liedberg, J. Phys. Chem. 100, 20089 (1996).

    CAS  Article  Google Scholar 

  40. 40

    R. G. Nuzzo, L. H. Dubois, and D. L. Allara, J. Am. Chem. Soc. 112, 558 (1990).

    CAS  Article  Google Scholar 

  41. 41

    H. O. Finklea, in Electroanalytical Chemistry: A Series of Advances (1996), Vol. 19, pp. 109–335.

    CAS  Google Scholar 

  42. 42

    S. E. Creager, L. A. Hockett, and G. K. Rowe, Langmuir 8, 854 (1992).

    CAS  Article  Google Scholar 

  43. 43

    F. Bensebaa, T. H. Ellis, A. Badia, and R. B. Lennox, J. Vac. Sci. Technol. A 13, 1331 (1995).

    CAS  Article  Google Scholar 

  44. 44

    M. Yamamoto, Y. Sakurai, Y. Hosoi, H. Ishii, K. Kajikawa, Y. Ouchi, and K. Seki, J. Phys. Chem. B 104, 7363 (2000).

    CAS  Article  Google Scholar 

  45. 45

    M. Yamamoto, Y. Sakurai, Y. Hosoi, H. Ishii, K. Kajikawa, Y. Ouchi, and K. Seki, J. Phys. Chem. B 104, 7370 (2000).

    CAS  Article  Google Scholar 

  46. 46

    R. Valiokas, M. Ostblom, S. Svedhem, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 104, 7565 (2000).

    CAS  Article  Google Scholar 

  47. 47

    A. J. Pertsin, M. Grunze, and I. A. Garbuzova, J. Phys. Chem. B 102, 4918 (1998).

    CAS  Article  Google Scholar 

  48. 48

    J. Lahiri, P. Kalal, A. G. Frutos, S. T. Jonas, and R. Schaeffler, Langmuir 16, 7805 (2000).

    CAS  Article  Google Scholar 

  49. 49

    D. K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001).

    CAS  Article  Google Scholar 

  50. 50

    S. Tokumitsu, A. Liebich, S. Herrwerth, W. Eck, M. Himmelhaus, and M. Grunze, Langmuir 18, 8862 (2002).

    CAS  Article  Google Scholar 

  51. 51

    J. Rundqvist, J. H. Hoh, and D. B. Haviland, Langmuir 21, 2981 (2005).

    CAS  Article  Google Scholar 

  52. 52

    O. Dannenberger, M. Buck, and M. Grunze, J. Phys. Chem. B 103, 2202 (1999).

    CAS  Article  Google Scholar 

  53. 53

    R. G. Snyder, M. Maroncelli, H. L. Strauss, and V. M. Hallmark, J. Phys. Chem. 90, 5623 (1986).

    CAS  Article  Google Scholar 

  54. 54

    R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, J. Am. Chem. Soc. 109, 733 (1987).

    CAS  Article  Google Scholar 

  55. 55

    D. J. Lavrich, S. M. Wetterer, S. L. Bernasek, and G. Scoles, J. Phys. Chem. B 102, 3456 (1998).

    CAS  Article  Google Scholar 

  56. 56

    A. J. Doig and D. H. Williams, J. Am. Chem. Soc. 114, 338 (1992).

    CAS  Article  Google Scholar 

  57. 57

    Y. K. Kang, J. Phys. Chem. B 104, 8321 (2000).

    CAS  Article  Google Scholar 

  58. 58

    A. L. Plant, Langmuir 9, 2764 (1993).

    CAS  Article  Google Scholar 

  59. 59

    S. A. Glazier, D. J. Vanderah, A. L. Plant, H. Bayley, G. Valincius, and J. J. Kasianowicz, Langmuir 16, 10428 (2000).

    CAS  Article  Google Scholar 

  60. 60

    A. Tinazli, J. L. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, and R. Tampe, Chemistry-a European Journal 11, 5249 (2005).

    CAS  Article  Google Scholar 

  61. 61

    See EPAPS Document No. E-BJIOBN-1-008601 for five figures with captions. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http:// www.aip.org/pubservs/epaps.html).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Liedberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valiokas, R., Östblom, M., Björefors, F. et al. Structural and kinetic properties of laterally stabilized, oligo(ethylene glycol)-containing alkylthiolates on gold: A modular approach. Biointerphases 1, 22–34 (2006). https://doi.org/10.1116/1.2188521

Download citation