Skip to main content

Journal for Biophysical Chemistry

Structural and kinetic properties of laterally stabilized, oligo(ethylene glycol)-containing alkylthiolates on gold: A modular approach

Abstract

The formation of highly ordered self-assembled monolayers (SAMs) on gold from an unusually long and linear compound HS(CH2)15CONH(CH2CH2O)6CH2CONH(CH2)15CH3 is investigated by contact angle goniometry, ex situ null ellipsometry, cyclic voltammetry and infrared reflection-absorption spectroscopy. The molecules are found to assemble in an upright position as a complete monolayer within 60 min. The overall structure of the SAM reaches equilibrium within 24 h as evidenced by infrared spectroscopy, although a slight improvement in water contact angles is observed over a period of a few weeks. The resulting SAM is 60 Å thick and it displays an advancing water contact angle of 112° and excellent electrochemical blocking characteristics with typical current densities about 20 times lower as compared to those observed for HS(CH2)15CH3 SAMs. The dominating crystalline phases of the supporting HS(CH2)15 and terminal (CH2)15CH3 alkyl portions, as well as the sealed oligo(ethylene glycol) (OEG) “core,” appear as unusually sharp features in the infrared spectra at room temperature. For example, the splitting seen for the CH3 stretching and CH2 scissoring peaks is normally only observed for conformationally trapped alkylthiolate SAMs at low temperatures and for highly crystalline polymethylenes. Temperature-programmed infrared spectroscopy in ultrahigh vacuum reveals a significantly improved thermal stability of the SAM under investigation, as compared to two analogous OEG derivatives without the extended alkyl chain. Our study points out the advantages of adopting a “modular approach” in designing novel SAM-forming compounds with precisely positioned in plane stabilizing groups. We demonstrate also the potential of using the above set of compounds in the fabrication of “hydrogel-like” arrays with controlled wetting properties for application in the ever-growing fields of protein and cell analysis, as well as for bioanalytical applications.

References

  1. M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (987).

    Article  Google Scholar 

  2. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).

    Article  CAS  Google Scholar 

  3. F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).

    Article  CAS  Google Scholar 

  4. Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).

    Article  CAS  Google Scholar 

  5. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 105, 1103 (2005).

    CAS  Google Scholar 

  6. W. Senaratne, L. Andruzzi, and C. K. Ober, Biomacromolecules 6, 2427 (2005).

    Article  CAS  Google Scholar 

  7. E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

    Article  CAS  Google Scholar 

  8. S. Svedhem, L. Ohberg, S. Borrelli, R. Valiokas, M. Andersson, S. Oscarson, S. C. T. Svensson, B. Liedberg, and P. Konradsson, Langmuir 18, 2848 (2002).

    Article  CAS  Google Scholar 

  9. C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

    Article  CAS  Google Scholar 

  10. K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    Article  CAS  Google Scholar 

  11. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  12. T. Miyazawa, K. Fukushima, and Y. J. Ideguchi, J. Chem. Phys. 37, 2764 (1962).

    Article  CAS  Google Scholar 

  13. G. S. MacGlashan, Y. G. Andreev, and P. G. Bruce, Nature (London) 398, 792 (1999).

    Article  CAS  Google Scholar 

  14. K. M. Gattas-Asfura, Y. J. Zheng, M. Micic, M. J. Snedaker, X. J. Ji, G. D. Sui, J. Orbulescu, F. M. Andreopoulos, S. M. Pham, C. M. Wang, and R. Leblanc, J. Phys. Chem. B 107, 10464 (2003).

    Article  CAS  Google Scholar 

  15. K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

    Article  CAS  Google Scholar 

  16. D. J. Vanderah, C. W. Meuse, V. Silin, and A. L. Plant, Langmuir 14, 6916 (1998).

    Article  CAS  Google Scholar 

  17. D. J. Vanderah, C. P. Pham, S. K. Springer, V. Silin, and C. W. Meuse, Langmuir 16, 6527 (2000).

    Article  CAS  Google Scholar 

  18. D. J. Vanderah, G. Valincius, and C. W. Meuse, Langmuir 18, 4674 (2002).

    Article  CAS  Google Scholar 

  19. D. J. Vanderah, J. Arsenault, H. La, R. S. Gates, V. Silin, C. W. Meuse, and G. Valincius, Langmuir 19, 3752 (2003).

    Article  CAS  Google Scholar 

  20. D. J. Vanderah, R. S. Gates, V. Silin, D. N. Zeiger, J. T. Woodward, C. W. Meuse, G. Valincius, and B. Nickel, Langmuir 19, 2612 (2003).

    Article  CAS  Google Scholar 

  21. D. J. Vanderah, H. L. La, J. Naff, V. Silin, and K. A. Rubinson, J. Am. Chem. Soc. 126, 13639 (2004).

    Article  CAS  Google Scholar 

  22. D. J. Vanderah, T. Parr, V. Silin, C. W. Meuse, R. S. Gates, H. Y. La, and G. Valincius, Langmuir 20, 1311 (2004).

    Article  CAS  Google Scholar 

  23. R. Valiokas, S. Svedhem, M. Ostblom, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 105, 5459 (2001).

    Article  CAS  Google Scholar 

  24. R. Valiokas, M. Ostblom, S. Svedhem, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 106, 10401 (2002).

    Article  CAS  Google Scholar 

  25. J. Benesch, S. Svedhem, S. C. T. Svensson, R. Valiokas, B. Liedberg, and P. Tengvall, J. Biomater. Sci., Polym. Ed. 12, 581 (2001).

    Article  CAS  Google Scholar 

  26. D. Schwendel, R. Dahint, S. Herrwerth, M. Schloerholz, W. Eck, and M. Grunze, Langmuir 17, 5717 (2001).

    Article  CAS  Google Scholar 

  27. S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).

    Article  CAS  Google Scholar 

  28. L. Malysheva, A. Onipko, R. Valiokas, and B. Liedberg, J. Phys. Chem. A 109, 7788 (2005).

    Article  CAS  Google Scholar 

  29. L. Malysheva, A. Onipko, R. Valiokas, and B. Liedberg, Appl. Surf. Sci. 246, 372 (2005).

    Article  CAS  Google Scholar 

  30. S. Svedhem, C. A. Hollander, J. Shi, P. Konradsson, B. Liedberg, and S. C. T. Svensson, J. Org. Chem. 66, 4494 (2001).

    Article  CAS  Google Scholar 

  31. L. Bertilsson and B. Liedberg, Langmuir 9, 141 (1993).

    Article  CAS  Google Scholar 

  32. Y. Zhou, R. Valiokas, and B. Liedberg, Langmuir 20, 6206 (2004).

    Article  CAS  Google Scholar 

  33. I. Engquist, I. Lundstrom, and B. Liedberg, J. Phys. Chem. 99, 12257 (1995).

    Article  CAS  Google Scholar 

  34. A. N. Parikh and D. L. Allara, J. Chem. Phys. 96, 927 (1992).

    Article  CAS  Google Scholar 

  35. L. Malysheva, Y. Klymenko, A. Onipko, R. Valiokas, and B. Liedberg, Chem. Phys. Lett. 370, 451 (2003).

    Article  CAS  Google Scholar 

  36. L. Malysheva, A. Onipko, R. Valiokas, and B. Liedberg, J. Phys. Chem. B 109, 13221 (2005).

    Article  CAS  Google Scholar 

  37. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, J. Am. Chem. Soc. 113, 7152 (1991).

    Article  CAS  Google Scholar 

  38. R. G. Nuzzo, E. M. Korenic, and L. H. Dubois, J. Chem. Phys. 93, 767 (1990).

    Article  CAS  Google Scholar 

  39. I. Engquist and B. Liedberg, J. Phys. Chem. 100, 20089 (1996).

    Article  CAS  Google Scholar 

  40. R. G. Nuzzo, L. H. Dubois, and D. L. Allara, J. Am. Chem. Soc. 112, 558 (1990).

    Article  CAS  Google Scholar 

  41. H. O. Finklea, in Electroanalytical Chemistry: A Series of Advances (1996), Vol. 19, pp. 109–335.

    CAS  Google Scholar 

  42. S. E. Creager, L. A. Hockett, and G. K. Rowe, Langmuir 8, 854 (1992).

    Article  CAS  Google Scholar 

  43. F. Bensebaa, T. H. Ellis, A. Badia, and R. B. Lennox, J. Vac. Sci. Technol. A 13, 1331 (1995).

    Article  CAS  Google Scholar 

  44. M. Yamamoto, Y. Sakurai, Y. Hosoi, H. Ishii, K. Kajikawa, Y. Ouchi, and K. Seki, J. Phys. Chem. B 104, 7363 (2000).

    Article  CAS  Google Scholar 

  45. M. Yamamoto, Y. Sakurai, Y. Hosoi, H. Ishii, K. Kajikawa, Y. Ouchi, and K. Seki, J. Phys. Chem. B 104, 7370 (2000).

    Article  CAS  Google Scholar 

  46. R. Valiokas, M. Ostblom, S. Svedhem, S. C. T. Svensson, and B. Liedberg, J. Phys. Chem. B 104, 7565 (2000).

    Article  CAS  Google Scholar 

  47. A. J. Pertsin, M. Grunze, and I. A. Garbuzova, J. Phys. Chem. B 102, 4918 (1998).

    Article  CAS  Google Scholar 

  48. J. Lahiri, P. Kalal, A. G. Frutos, S. T. Jonas, and R. Schaeffler, Langmuir 16, 7805 (2000).

    Article  CAS  Google Scholar 

  49. D. K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001).

    Article  CAS  Google Scholar 

  50. S. Tokumitsu, A. Liebich, S. Herrwerth, W. Eck, M. Himmelhaus, and M. Grunze, Langmuir 18, 8862 (2002).

    Article  CAS  Google Scholar 

  51. J. Rundqvist, J. H. Hoh, and D. B. Haviland, Langmuir 21, 2981 (2005).

    Article  CAS  Google Scholar 

  52. O. Dannenberger, M. Buck, and M. Grunze, J. Phys. Chem. B 103, 2202 (1999).

    Article  CAS  Google Scholar 

  53. R. G. Snyder, M. Maroncelli, H. L. Strauss, and V. M. Hallmark, J. Phys. Chem. 90, 5623 (1986).

    Article  CAS  Google Scholar 

  54. R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, J. Am. Chem. Soc. 109, 733 (1987).

    Article  CAS  Google Scholar 

  55. D. J. Lavrich, S. M. Wetterer, S. L. Bernasek, and G. Scoles, J. Phys. Chem. B 102, 3456 (1998).

    Article  CAS  Google Scholar 

  56. A. J. Doig and D. H. Williams, J. Am. Chem. Soc. 114, 338 (1992).

    Article  CAS  Google Scholar 

  57. Y. K. Kang, J. Phys. Chem. B 104, 8321 (2000).

    Article  CAS  Google Scholar 

  58. A. L. Plant, Langmuir 9, 2764 (1993).

    Article  CAS  Google Scholar 

  59. S. A. Glazier, D. J. Vanderah, A. L. Plant, H. Bayley, G. Valincius, and J. J. Kasianowicz, Langmuir 16, 10428 (2000).

    Article  CAS  Google Scholar 

  60. A. Tinazli, J. L. Tang, R. Valiokas, S. Picuric, S. Lata, J. Piehler, B. Liedberg, and R. Tampe, Chemistry-a European Journal 11, 5249 (2005).

    Article  CAS  Google Scholar 

  61. See EPAPS Document No. E-BJIOBN-1-008601 for five figures with captions. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http:// www.aip.org/pubservs/epaps.html).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liedberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiokas, R., Östblom, M., Björefors, F. et al. Structural and kinetic properties of laterally stabilized, oligo(ethylene glycol)-containing alkylthiolates on gold: A modular approach. Biointerphases 1, 22–34 (2006). https://doi.org/10.1116/1.2188521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2188521