R. Lipowsky and E. Sackmann, Structure and Dynamics of Membranes (Elsevier, Amsterdam, 1995), Vol. 1.
Google Scholar
J. N. Israelachvili and H. Wennerström, J. Phys. Chem. 96, 520 (1992).
Article
CAS
Google Scholar
R. Evans and U. M. B. Marconi, J. Chem. Phys. 86, 7138 (1987).
Article
CAS
Google Scholar
I. Langmuir, J. Chem. Phys. 6, 873 (1938).
Article
CAS
Google Scholar
B. V. Derjaguin and N. V. Churaev, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, Chichester, 1986), Chap. 15.
Google Scholar
E. S. A. Jordine, J. Colloid Interface Sci. 45, 435 (1973).
Article
CAS
Google Scholar
J. Israelachvili and H. Wennerström, Nature (London) 379, 219 (1996).
Article
CAS
Google Scholar
V. A. Parsegian and R. P. Rand, Langmuir 7, 1299 (1991).
Article
CAS
Google Scholar
A. Pertsin, D. Platonov, and M. Grunze, J. Chem. Phys. 122, 244708 (2005).
Article
Google Scholar
M. Elder, P. Hitchcock, and R. Mason, Proc. R. Soc. London, Ser. A 354, 157 (1977).
Article
CAS
Google Scholar
J. F. Nagle and M. C. Wiener, Biochim. Biophys. Acta 942, 1 (1988).
Article
CAS
Google Scholar
Initially, we tried to simulate the interaction of gel-phase DLPE membranes at room temperature and A=42 Å. It turned out, however, that the force field used failed to reproduce the gel state of the membranes, resulting in a substantially disordered structure corresponding rather to the liquid-crystalline state.
S.-J. Marrink and H. J. C. Berendsen, J. Phys. Chem. 98, 4155 (1994).
Article
CAS
Google Scholar
P. Jedlovszky and M. Mezei, J. Chem. Phys. 111, 10770 (1999).
Article
CAS
Google Scholar
A. M. Smondyrev and M. L. Berkowitz, J. Comput. Chem. 20, 531 (1999).
Article
CAS
Google Scholar
D. P. Tieleman, URL http://moose.bio.ucalgary.ca/files/pope.itp.
W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985).
Article
CAS
Google Scholar
H. Hauser, I. Pascher, R. H. Pearson, and S. Sundell, Biochim. Biophys. Acta 650, 21 (1981).
CAS
Google Scholar
W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
Article
CAS
Google Scholar
T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
Article
CAS
Google Scholar
R. M. Venable, B. R. Brooks, and R. W. Pastor, J. Chem. Phys. 112, 4822 (2000).
Article
CAS
Google Scholar
W. Shinoda, N. Namiki, and S. Okazaki, J. Chem. Phys. 106, 5731 (1994).
Article
Google Scholar
The use of a statistical ensemble with a fixed lateral area of the simulation cell and a fixed number of lipid molecules could, in principle, partially suppress fluctuations in the local areal density of the lipid, which could affect the membrane permeability. For a simulation cell containing 32 symmetrically independent lipid molecules per monolayer, as in our case, the use of a fixed membrane area ensemble should however have little effect on the fluctuations in the local areal density. This follows from the MD results reported by S. E. Feller and R. W. Pastor, [J. Chem. Phys. 111, 1281 (2005]) who compared the probability distributions of single molecule areas in fixed- and variable-area ensembles for a hydrated lipid membrane with 36 independent molecules per monolayer in the simulation cell.
M. R. Stapleton and A. Panagiotopoulos, J. Chem. Phys. 92, 1285 (1990).
Article
CAS
Google Scholar
M. Mezei, Mol. Phys. 40, 901 (1980).
Article
CAS
Google Scholar
R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).
Article
Google Scholar
A. J. Pertsin, J. Hahn, and H.-P. Grossmann, J. Comput. Chem. 15, 1121 (1994).
Article
CAS
Google Scholar
A. Pertsin and M. Grunze, J. Phys. Chem. B 108, 16533 (2004).
Article
CAS
Google Scholar
D. J. Adams, Mol. Phys. 28, 1241 (1974).
Article
CAS
Google Scholar
T. J. McIntosh and S. A. Simon, Biochemistry 25, 4948 (1986).
Article
CAS
Google Scholar
Throughout the article, the atom numbering is as suggested by Sundaralingam [Ann. N.Y. Acad. Sci. 195, 324 (1972)]. The two carbon atoms in parentheses belong to the glycerol residue.
T. J. McIntosh and S. A. Simon, Langmuir 12, 1622 (1996).
Article
CAS
Google Scholar
L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, and V. A. Parsegian, Biophys. J. 37, 657 (1982).
CAS
Google Scholar
We here imply a large separation range, where the oscillations of water density and hydration pressure can be neglected.
M. Schlenkrich, J. Brickmann, A. D. MacKerell, Jr., and M. Karplus, in Biological Membranes: A Molecular Perspective from Computation and Experiment, edited by K. M. Merz, Jr. and B. Roux (Birkhäuser, Boston, 1996).
Google Scholar
The GCMC simulations by Jedlovszky and Mezey (see Ref. 14), cited in the beginning of the previous section, were carried out at a lamellar repeat period D much larger than D
0. No attempt to reproduce the experimental value of n
w
was undertaken.
A. J. Pertsin and A. I. Kitaigorodsky, The Atom-Atom Potential Method (Springer, Berlin, 1987).
Book
Google Scholar
S.-W. Chiu, M. Clark, V. Balaji, S. Subramaniam, H. L. Scott, and E. Jakobsson, Biophys. J. 69, 1230 (1995).
Article
CAS
Google Scholar
W. L. Jorgensen and J. Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 102, 6665 (2005).
Article
CAS
Google Scholar