Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Computer simulation of short-range repulsion between supported phospholipid membranes


The grand canonical Monte Carlo technique is used to calculate the water-mediated pressure between two supported 1,2-dilauroyl-dl-phosphatidylethanolamine (DLPE) membranes in the short separation range. The intra- and intermolecular interactions in the system are described with a combination of a united-atom AMBER-based force field for DLPE and a TIP4P model for water. The total pressure is analyzed in terms of its hydration component and the component due to the direct interaction between the membranes. The latter is, in addition, partitioned into the electrostatic, dispersion, and steric repulsion contributions to give an idea of their relative significance in the water-mediated intermembrane interaction. It is found that the force field used exaggerates the water affinity of the membranes, resulting in an overestimated hydration level and intermembrane pressure. The simulations of the hydrated membranes with damped water-lipid interaction potentials show that both the hydration and pressure are extremely sensitive to the strength of the water-lipid interactions. Moreover, the damping of the mixed interactions by only 10%–20% changes significantly the relative contribution of the individual pressure components to the intermembrane repulsion.


  1. 1

    R. Lipowsky and E. Sackmann, Structure and Dynamics of Membranes (Elsevier, Amsterdam, 1995), Vol. 1.

    Google Scholar 

  2. 2

    J. N. Israelachvili and H. Wennerström, J. Phys. Chem. 96, 520 (1992).

    Article  CAS  Google Scholar 

  3. 3

    R. Evans and U. M. B. Marconi, J. Chem. Phys. 86, 7138 (1987).

    Article  CAS  Google Scholar 

  4. 4

    I. Langmuir, J. Chem. Phys. 6, 873 (1938).

    Article  CAS  Google Scholar 

  5. 5

    B. V. Derjaguin and N. V. Churaev, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, Chichester, 1986), Chap. 15.

    Google Scholar 

  6. 6

    E. S. A. Jordine, J. Colloid Interface Sci. 45, 435 (1973).

    Article  CAS  Google Scholar 

  7. 7

    J. Israelachvili and H. Wennerström, Nature (London) 379, 219 (1996).

    Article  CAS  Google Scholar 

  8. 8

    V. A. Parsegian and R. P. Rand, Langmuir 7, 1299 (1991).

    Article  CAS  Google Scholar 

  9. 9

    A. Pertsin, D. Platonov, and M. Grunze, J. Chem. Phys. 122, 244708 (2005).

    Article  Google Scholar 

  10. 10

    M. Elder, P. Hitchcock, and R. Mason, Proc. R. Soc. London, Ser. A 354, 157 (1977).

    Article  CAS  Google Scholar 

  11. 11

    J. F. Nagle and M. C. Wiener, Biochim. Biophys. Acta 942, 1 (1988).

    Article  CAS  Google Scholar 

  12. 12

    Initially, we tried to simulate the interaction of gel-phase DLPE membranes at room temperature and A=42 Å. It turned out, however, that the force field used failed to reproduce the gel state of the membranes, resulting in a substantially disordered structure corresponding rather to the liquid-crystalline state.

  13. 13

    S.-J. Marrink and H. J. C. Berendsen, J. Phys. Chem. 98, 4155 (1994).

    Article  CAS  Google Scholar 

  14. 14

    P. Jedlovszky and M. Mezei, J. Chem. Phys. 111, 10770 (1999).

    Article  CAS  Google Scholar 

  15. 15

    A. M. Smondyrev and M. L. Berkowitz, J. Comput. Chem. 20, 531 (1999).

    Article  CAS  Google Scholar 

  16. 16

    D. P. Tieleman, URL

  17. 17

    W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985).

    Article  CAS  Google Scholar 

  18. 18

    H. Hauser, I. Pascher, R. H. Pearson, and S. Sundell, Biochim. Biophys. Acta 650, 21 (1981).

    CAS  Google Scholar 

  19. 19

    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).

    Article  CAS  Google Scholar 

  20. 20

    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  21. 21

    R. M. Venable, B. R. Brooks, and R. W. Pastor, J. Chem. Phys. 112, 4822 (2000).

    Article  CAS  Google Scholar 

  22. 22

    W. Shinoda, N. Namiki, and S. Okazaki, J. Chem. Phys. 106, 5731 (1994).

    Article  Google Scholar 

  23. 23

    The use of a statistical ensemble with a fixed lateral area of the simulation cell and a fixed number of lipid molecules could, in principle, partially suppress fluctuations in the local areal density of the lipid, which could affect the membrane permeability. For a simulation cell containing 32 symmetrically independent lipid molecules per monolayer, as in our case, the use of a fixed membrane area ensemble should however have little effect on the fluctuations in the local areal density. This follows from the MD results reported by S. E. Feller and R. W. Pastor, [J. Chem. Phys. 111, 1281 (2005]) who compared the probability distributions of single molecule areas in fixed- and variable-area ensembles for a hydrated lipid membrane with 36 independent molecules per monolayer in the simulation cell.

  24. 24

    M. R. Stapleton and A. Panagiotopoulos, J. Chem. Phys. 92, 1285 (1990).

    Article  CAS  Google Scholar 

  25. 25

    M. Mezei, Mol. Phys. 40, 901 (1980).

    Article  CAS  Google Scholar 

  26. 26

    R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  Google Scholar 

  27. 27

    A. J. Pertsin, J. Hahn, and H.-P. Grossmann, J. Comput. Chem. 15, 1121 (1994).

    Article  CAS  Google Scholar 

  28. 28

    A. Pertsin and M. Grunze, J. Phys. Chem. B 108, 16533 (2004).

    Article  CAS  Google Scholar 

  29. 29

    D. J. Adams, Mol. Phys. 28, 1241 (1974).

    Article  CAS  Google Scholar 

  30. 30

    T. J. McIntosh and S. A. Simon, Biochemistry 25, 4948 (1986).

    Article  CAS  Google Scholar 

  31. 31

    Throughout the article, the atom numbering is as suggested by Sundaralingam [Ann. N.Y. Acad. Sci. 195, 324 (1972)]. The two carbon atoms in parentheses belong to the glycerol residue.

  32. 32

    T. J. McIntosh and S. A. Simon, Langmuir 12, 1622 (1996).

    Article  CAS  Google Scholar 

  33. 33

    L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, and V. A. Parsegian, Biophys. J. 37, 657 (1982).

    CAS  Google Scholar 

  34. 34

    We here imply a large separation range, where the oscillations of water density and hydration pressure can be neglected.

  35. 35

    M. Schlenkrich, J. Brickmann, A. D. MacKerell, Jr., and M. Karplus, in Biological Membranes: A Molecular Perspective from Computation and Experiment, edited by K. M. Merz, Jr. and B. Roux (Birkhäuser, Boston, 1996).

    Google Scholar 

  36. 36

    The GCMC simulations by Jedlovszky and Mezey (see Ref. 14), cited in the beginning of the previous section, were carried out at a lamellar repeat period D much larger than D 0. No attempt to reproduce the experimental value of n w was undertaken.

  37. 37

    A. J. Pertsin and A. I. Kitaigorodsky, The Atom-Atom Potential Method (Springer, Berlin, 1987).

    Google Scholar 

  38. 38

    S.-W. Chiu, M. Clark, V. Balaji, S. Subramaniam, H. L. Scott, and E. Jakobsson, Biophys. J. 69, 1230 (1995).

    Article  CAS  Google Scholar 

  39. 39

    W. L. Jorgensen and J. Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 102, 6665 (2005).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michael Grunze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pertsin, A., Platonov, D. & Grunze, M. Computer simulation of short-range repulsion between supported phospholipid membranes. Biointerphases 1, 40–49 (2006).

Download citation