Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Directions in peptide interfacial science

Abstract

The evolution of biological surface science can be credited to the development of traditional surface-chemistry tools and techniques to investigate molecular and atomic-scale bonding, structure, conformation, physical properties (e.g., chemical, electronic, mechanical), and dynamics of adsorbates at various interfaces:1 Both classical measurements of surface behavior and features (i.e., adsorption isotherms, surface areas, roughness, thickness, and topography) and modern spectroscopic-based techniques that provide information on elemental composition, oxidation state, depth profiling, and distribution of chemical species have shown applicability to the study of biomolecular interactions.1 However, experiments that probe with electrons, atoms or ions require ultrahigh vacuum (UHV) or reduced pressures at the interface, and are thus intrinsically limited with regards to interfacial explorations in an aqueous environment, i.e., the study of at biomolecules the solid/water interface.1

References

  1. 1

    G. A. Somorjai, Introduction to Surface Chemistry And Catalysis (Wiley, New York, 1994), Chap. 1.

    Google Scholar 

  2. 2

    W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).

    Article  Google Scholar 

  3. 3

    C. Tanford, Science 200, 1012 (1978).

    Article  Google Scholar 

  4. 4

    D. Chandler, Nature (London) 437, 640 (2005).

    Article  Google Scholar 

  5. 5

    B. Kasemo, Surf. Sci. 500, 656 (2002).

    Article  Google Scholar 

  6. 6

    D. Zhang, R. S. Ward, Y. R. Shen, and G. A. Somorjai, J. Phys. Chem. B 101, 9060 (1997).

    Article  Google Scholar 

  7. 7

    D. Zhang, D. H. Gracias, R. Ward, M. Gauckler, Y. Tian, Y. R. Shen, and G. A. Somorjai, J. Phys. Chem. B 102, 6225 (1998).

    Article  Google Scholar 

  8. 8

    T. S. Koffas, E. Amitay-Sadovsky, J. Kim, and G. A. Somorjai, J. Biomater. Sci., Polym. Ed. 15, 475 (2004).

    Google Scholar 

  9. 9

    A. Opdahl, S. Hoffer, B. Mailhot, and G. A. Somorjai, Chem. Rec. 1, 101 (2001).

    Article  Google Scholar 

  10. 10

    B. Kasemo, Crit. Rev. Solid State Mater. Sci. 3, 451 (1998).

    Article  Google Scholar 

  11. 11

    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).

    Article  Google Scholar 

  12. 12

    T. J. Lenk, T. A. Horbett, B. D. Ratner, and K. K. Chittur, Langmuir 7, 1755 (1991).

    Article  Google Scholar 

  13. 13

    B. Hagenhoff, Biosens. Bioelectron. 10, 885 (1995).

    Article  Google Scholar 

  14. 14

    T. M. Cotton, J. H. Kim, and G. D. Chumanov, J. Raman Spectrosc. 22, 729 (1991).

    Article  Google Scholar 

  15. 15

    S. L. Burkett and M. J. Read, Langmuir 17, 5059 (2001).

    Article  Google Scholar 

  16. 16

    J. R. Long, N. Oyler, G. P. Drobny, and P. S. Stayton, J. Am. Chem. Soc. 124, 6297 (2002).

    Article  Google Scholar 

  17. 17

    F. Höök and B. Kasemo, Colloids Surf., B 24, 155 (2002).

    Article  Google Scholar 

  18. 18

    S. A. Asher, Annu. Rev. Phys. Chem. 39, 537 (1988).

    Article  Google Scholar 

  19. 19

    G. Wider and K. Wüthrich, Curr. Opin. Struct. Biol. 9, 594 (1999).

    Article  Google Scholar 

  20. 20

    G. M. Clore and A. M. Gronenborn, Trends Biotechnol. 16, 22 (1998).

    Article  Google Scholar 

  21. 21

    J. T. Pelton and L. R. McLean, Anal. Biochem. 277, 167 (2000).

    Article  Google Scholar 

  22. 22

    A. Rodger and B. Nordén, Circular Dichroism and Linear Dichroism (Oxford University Press, New York, 1997).

    Google Scholar 

  23. 23

    N. H. Lee, L. M. Christensen, and C. W. Frank, Langmuir 19, 3525 (2003).

    Article  Google Scholar 

  24. 24

    A. Opdahl and G. A. Somorjai, ACS Symposium Series: Application of Scanned Probe Microscopy to Polymers (American Chemical Society, Washington, DC, 2005), Vol. 897, Chaps. 9, p. 112.

    Google Scholar 

  25. 25

    K. A. Marx, Biomacromolecules 4, 1099 (2003).

    Article  Google Scholar 

  26. 26

    F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, Langmuir 14, 729 (1998).

    Article  Google Scholar 

  27. 27

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    Article  Google Scholar 

  28. 28

    O. Mermut, D. C. Phillips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).

    Article  Google Scholar 

  29. 29

    J. Kim and G. A. Somorjai, J. Am. Chem. Soc. 125, 3150 (2003).

    Article  Google Scholar 

  30. 30

    J. Wang, S. M. Buck, M. A. Even, and Z. Chen, J. Am. Chem. Soc. 124, 13302 (2002).

    Article  Google Scholar 

  31. 31

    F. E. Regnier, Science 238, 319 (1987).

    Article  Google Scholar 

  32. 32

    J. Kim, K. C. Chou, and G. A. Somorjai, J. Phys. Chem. B 106, 9198 (2002).

    Article  Google Scholar 

  33. 33

    M. R. Watry and G. L. Richmond, J. Phys. Chem. B 106, 12517 (2002).

    Article  Google Scholar 

  34. 34

    N. Ji and Y. R. Shen, J. Chem. Phys. 120, 7107 (2004).

    Article  Google Scholar 

  35. 35

    K. C. Chou, J. Kim, S. Baldelli, and G. A. Somorjai, J. Electroanal. Chem. 554, 253 (2003).

    Article  Google Scholar 

  36. 36

    V. A. Basiuk, T. U. Gromovoy, and E. G. Khil'Chevskaya, Origins Life Evol. Biosphere 25, 375 (1995).

    Article  Google Scholar 

  37. 37

    D. King, C. Fields, and G. Fields, Int. J. Pept. Protein Res. 36, 255 (1990).

    Article  Google Scholar 

  38. 38

    W. F. Degrado and J. D. Lear, J. Am. Chem. Soc. 107, 7684 (1985).

    Article  Google Scholar 

  39. 39

    H. Y. Xiong, B. L. Buckwalter, H. M. Shieh, and M. H. Hecht, Proc. Natl. Acad. Sci. U.S.A. 92, 6349 (1995).

    Article  Google Scholar 

  40. 40

    S. Marqusee and R. L. Baldwin, Proc. Natl. Acad. Sci. U.S.A. 84, 8898 (1987).

    Article  Google Scholar 

  41. 41

    N. T. Samuel, K. R. McCrea, L. J. Gamble, R. S. Ward, P. S. Stayton, G. A. Somorjai, and D. G. Castner (unpublished).

  42. 42

    A. Opdahl, T. S. Koffas, E. Amitay-Sadovsky, J. Kim, and G. A. Somorjai, J. Phys.: Condens. Matter 16, R659 (2004)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mermut, O., York, R.L., Phillips, D.C. et al. Directions in peptide interfacial science. Biointerphases 1, P5–P11 (2006). https://doi.org/10.1116/1.2194033

Download citation