Directions in peptide interfacial science
Biointerphases volume 1, pages P5–P11 (2006)
Abstract
The evolution of biological surface science can be credited to the development of traditional surface-chemistry tools and techniques to investigate molecular and atomic-scale bonding, structure, conformation, physical properties (e.g., chemical, electronic, mechanical), and dynamics of adsorbates at various interfaces:1 Both classical measurements of surface behavior and features (i.e., adsorption isotherms, surface areas, roughness, thickness, and topography) and modern spectroscopic-based techniques that provide information on elemental composition, oxidation state, depth profiling, and distribution of chemical species have shown applicability to the study of biomolecular interactions.1 However, experiments that probe with electrons, atoms or ions require ultrahigh vacuum (UHV) or reduced pressures at the interface, and are thus intrinsically limited with regards to interfacial explorations in an aqueous environment, i.e., the study of at biomolecules the solid/water interface.1
References
G. A. Somorjai, Introduction to Surface Chemistry And Catalysis (Wiley, New York, 1994), Chap. 1.
W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).
C. Tanford, Science 200, 1012 (1978).
D. Chandler, Nature (London) 437, 640 (2005).
B. Kasemo, Surf. Sci. 500, 656 (2002).
D. Zhang, R. S. Ward, Y. R. Shen, and G. A. Somorjai, J. Phys. Chem. B 101, 9060 (1997).
D. Zhang, D. H. Gracias, R. Ward, M. Gauckler, Y. Tian, Y. R. Shen, and G. A. Somorjai, J. Phys. Chem. B 102, 6225 (1998).
T. S. Koffas, E. Amitay-Sadovsky, J. Kim, and G. A. Somorjai, J. Biomater. Sci., Polym. Ed. 15, 475 (2004).
A. Opdahl, S. Hoffer, B. Mailhot, and G. A. Somorjai, Chem. Rec. 1, 101 (2001).
B. Kasemo, Crit. Rev. Solid State Mater. Sci. 3, 451 (1998).
K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).
T. J. Lenk, T. A. Horbett, B. D. Ratner, and K. K. Chittur, Langmuir 7, 1755 (1991).
B. Hagenhoff, Biosens. Bioelectron. 10, 885 (1995).
T. M. Cotton, J. H. Kim, and G. D. Chumanov, J. Raman Spectrosc. 22, 729 (1991).
S. L. Burkett and M. J. Read, Langmuir 17, 5059 (2001).
J. R. Long, N. Oyler, G. P. Drobny, and P. S. Stayton, J. Am. Chem. Soc. 124, 6297 (2002).
F. Höök and B. Kasemo, Colloids Surf., B 24, 155 (2002).
S. A. Asher, Annu. Rev. Phys. Chem. 39, 537 (1988).
G. Wider and K. Wüthrich, Curr. Opin. Struct. Biol. 9, 594 (1999).
G. M. Clore and A. M. Gronenborn, Trends Biotechnol. 16, 22 (1998).
J. T. Pelton and L. R. McLean, Anal. Biochem. 277, 167 (2000).
A. Rodger and B. Nordén, Circular Dichroism and Linear Dichroism (Oxford University Press, New York, 1997).
N. H. Lee, L. M. Christensen, and C. W. Frank, Langmuir 19, 3525 (2003).
A. Opdahl and G. A. Somorjai, ACS Symposium Series: Application of Scanned Probe Microscopy to Polymers (American Chemical Society, Washington, DC, 2005), Vol. 897, Chaps. 9, p. 112.
K. A. Marx, Biomacromolecules 4, 1099 (2003).
F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, Langmuir 14, 729 (1998).
C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).
O. Mermut, D. C. Phillips, R. L. York, K. R. McCrea, R. S. Ward, and G. A. Somorjai, J. Am. Chem. Soc. 128, 3598 (2006).
J. Kim and G. A. Somorjai, J. Am. Chem. Soc. 125, 3150 (2003).
J. Wang, S. M. Buck, M. A. Even, and Z. Chen, J. Am. Chem. Soc. 124, 13302 (2002).
F. E. Regnier, Science 238, 319 (1987).
J. Kim, K. C. Chou, and G. A. Somorjai, J. Phys. Chem. B 106, 9198 (2002).
M. R. Watry and G. L. Richmond, J. Phys. Chem. B 106, 12517 (2002).
N. Ji and Y. R. Shen, J. Chem. Phys. 120, 7107 (2004).
K. C. Chou, J. Kim, S. Baldelli, and G. A. Somorjai, J. Electroanal. Chem. 554, 253 (2003).
V. A. Basiuk, T. U. Gromovoy, and E. G. Khil'Chevskaya, Origins Life Evol. Biosphere 25, 375 (1995).
D. King, C. Fields, and G. Fields, Int. J. Pept. Protein Res. 36, 255 (1990).
W. F. Degrado and J. D. Lear, J. Am. Chem. Soc. 107, 7684 (1985).
H. Y. Xiong, B. L. Buckwalter, H. M. Shieh, and M. H. Hecht, Proc. Natl. Acad. Sci. U.S.A. 92, 6349 (1995).
S. Marqusee and R. L. Baldwin, Proc. Natl. Acad. Sci. U.S.A. 84, 8898 (1987).
N. T. Samuel, K. R. McCrea, L. J. Gamble, R. S. Ward, P. S. Stayton, G. A. Somorjai, and D. G. Castner (unpublished).
A. Opdahl, T. S. Koffas, E. Amitay-Sadovsky, J. Kim, and G. A. Somorjai, J. Phys.: Condens. Matter 16, R659 (2004)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mermut, O., York, R.L., Phillips, D.C. et al. Directions in peptide interfacial science. Biointerphases 1, P5–P11 (2006). https://doi.org/10.1116/1.2194033
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1116/1.2194033