Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image
We’d like to understand how you use our websites in order to improve them. Register your interest.

Mineralized biological materials: A perspective on interfaces and interphases designed over millions of years

Abstract

The one feature that distinguishes mineralized biological from synthetic materials is the presence in mineralized biological materials of a complex assemblage of macromolecules. This assemblage usually acts as the host to the guest mineral particles, a well known phenomenon in composite materials. The macromolecules can, surprisingly, also be the guests inside a host crystal, to form a sort of reverse composite material. Their presence both between and within crystals creates diverse interfaces and interphases, and these have marked effects on the mechanical properties of the material. Such “novelties” are the products of the evolutionary process, which by trial and error over long periods of time arrives at a solution that works. This may not be the most elegant solution or the most economical solution, and is therefore often unexpected. It is thus the possibility of discovering the unexpected that makes the investigation of biological materials so exciting. In some cases the biological solution to a problem may also be useful for improving synthetic materials, an added benefit. In this context, we examine here several interfaces and interphases in mineralized biological materials.

References

  1. 1

    K. Markel, P. Gorny, and K. Abraham, Fortschr. Zool. 24, 103 (1977).

    Google Scholar 

  2. 2

    R. Z. Wang, L. Addadi, and S. Weiner, Philos. Trans. R. Soc. London, Ser. B 352, 469 (1997).

    Article  Google Scholar 

  3. 3

    J. H. Schroeder, E. J. Dwornik, and J. J. Papike, Bull. Geol. Soc. Am. 80, 1613 (1969).

    Article  Google Scholar 

  4. 4

    B. Lawn, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  5. 5

    H. A. Lowenstam and S. Weiner, On Biomineralization (Oxford University Press, New York, 1989).

    Google Scholar 

  6. 6

    K. Simkiss and K. M. Wilbur, Biomineralization Cell Biology and Mineral Deposition (Academic, San Diego, 1989).

    Google Scholar 

  7. 7

    S. Weiner and W. Traub, Philos. Trans. R. Soc. London, Ser. B 304, 421 (1984).

    Google Scholar 

  8. 8

    H. Nakahara, Biomineralization and Biological Metal Accumulation (Reidel, Dordrecht, 1983), pp. 225–230.

    Google Scholar 

  9. 9

    L. Addadi, D. Joester, F. Nudelman, and S. Weiner, Chem.-Eur. J. 12, 980 (2006).

    Article  Google Scholar 

  10. 10

    F. Nudelman, B. Gotliv, L. Addadi, S. Weiner, J. Struct. Biol. (in press).

  11. 11

    L. Addadi, J. Moradian, E. Shay, N. G. Maroudas, and S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 84, 2732 (1987).

    Article  Google Scholar 

  12. 12

    F. Nudelman, B. Gotliv, L. Addadi, and S. Weiner, J. Struct. Biol. (in press).

  13. 13

    N. Nassif, N. Pinna, N. Gehrke, M. Antoinetti, C. Jager, and H. Colfen, Proc. Natl. Acad. Sci. U.S.A. 102, 12563 (2005).

    Google Scholar 

  14. 14

    E. D. Sone, S. Weiner, and L. Addadi, Cryst. Growth Des. 5, 2131 (2005).

    Article  Google Scholar 

  15. 15

    L. C. Bonar, S. Lees, and H. A. Mook, J. Mol. Biol. 20, 265 (1985).

    Article  Google Scholar 

  16. 16

    W. Traub, T. Arad, and S. Weiner, Matrix 12, 251 (1992).

    Article  Google Scholar 

  17. 17

    S. Fitton Jackson, Proc. R. Soc. London, Ser. B 146, 270 (1956).

    Article  Google Scholar 

  18. 18

    A. L. Arsenault, Calcif. Tissue Int. 48, 56 (1991).

    Article  Google Scholar 

  19. 19

    C. W. McCutchen, J. Theor. Biol. 51, 51 (1975).

    Article  Google Scholar 

  20. 20

    D. K. Whittaker, J. Anat. 125, 323 (1978).

    Google Scholar 

  21. 21

    R. Wang and S. Weiner, J. Biomech. 31, 135 (1998).

    Article  Google Scholar 

  22. 22

    P. Zaslansky, A. A. Friesem, and S. Weiner, J. Struct. Biol. (in press).

  23. 23

    M. L. Moss, Acta Anat. (Basel) 87, 481 (1974).

    Article  Google Scholar 

  24. 24

    J. D. Wood, R. Z. Wang, S. Weiner, and D. H. Pashley, Dent. Mater. 19, 159 (2003).

    Article  Google Scholar 

  25. 25

    W. Tesch, N. Eidelman, P. Roschger, F. Goldenberg, K. Klaushofer, and P. Fratzl, Calcif. Tissue Int. 69, 147 (2001).

    Article  Google Scholar 

  26. 26

    R. Z. Wang and S. Weiner, Connect. Tissue Res. 39, 269 (1998).

    Article  Google Scholar 

  27. 27

    R. Craig, P. Gehring, and F. Peyton, J. Dent. Res. 38, 624 (1959).

    Article  Google Scholar 

  28. 28

    S. P. Ho, M. Balooch, S. J. Marshall, and G. W. Marshall, J. Biomed. Mater. Res. 70, 480 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steve Weiner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weiner, S., Nudelman, F., Sone, E. et al. Mineralized biological materials: A perspective on interfaces and interphases designed over millions of years. Biointerphases 1, P12–P14 (2006). https://doi.org/10.1116/1.2207607

Download citation