Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Surface plasmon optical detection of β-lactamase binding to different interfacial matrices combined with fiber optic absorbance spectroscopy for enzymatic activity assays

Abstract

In this study, we describe the attachment of biotin-functionalized β-lactamase to different types of interfacial architectures. Generic biotin-NeutrAvidin binding matrices were assembled using biotin-terminated alkanethiol and poly (L-lysine)-g-poly (ethylene glycol) polymer. Quantitative comparisons were made between different matrices and binding strategies. In addition, the feasibility of regeneration was tested. Our results show that in general all matrices were well suited for the binding of the protein, although quantitative differences were observed and will be discussed. Furthermore, the results obtained by surface plasmon resonance spectrometer and optical waveguide measurements show excellent correlation. For all five matrices investigated, real time enzymatic activity assays of β-lactamase were performed by a detection scheme that combines an affinity and a catalytic sensor. The results show that the surface-immobilized enzymes are stable and sufficiently active for highly sensitive catalytic activity measurements. The effect of surface immobilization on the catalytic activity of the enzyme is discussed.

References

  1. 1

    R. L. Rich and D. G. Myszka, J. Mol. Recognit. 16, 351 (2003).

    Article  Google Scholar 

  2. 2

    F. Xu, G. Zhen, F. Yu, E. Kuennemann, M. Textor, and W. Knoll, J. Am. Chem. Soc. 127, 13084 (2005).

    Article  Google Scholar 

  3. 3

    J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).

    Article  Google Scholar 

  4. 4

    N. Huang, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).

    Article  Google Scholar 

  5. 5

    K. D. Park and S. M. Kim, Poly (Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, edited by J. M. Harris (Plenum, New York, 1992), pp. 283–301.

    Google Scholar 

  6. 6

    M. D. Marazuela and M. C. Moreno-Bondi, Anal. Bioanal. Chem. 372, 664 (2002).

    Article  Google Scholar 

  7. 7

    J. R. Knowles, Acc. Chem. Res. 18, 97 (1985).

    Article  Google Scholar 

  8. 8

    W. J. Albery and J. R. Knowles, Biochemistry 15, 5588 (1976).

    Article  Google Scholar 

  9. 9

    G. Zhen, V. Eggli, J. Vörös, P. Zammaretti, M. Textor, R. Glockshuber, and E. Kuennemann, Langmuir 20, 10464 (2004).

    Article  Google Scholar 

  10. 10

    D. M. Livermore, Clin. Microbiol. Rev. 8, 557 (1995).

    Google Scholar 

  11. 11

    W. Huang, J. Wang, D. Bhattacharyya, and L. G. Bachas, Anal. Chem. 69, 4601 (1997).

    Article  Google Scholar 

  12. 12

    C. H. Ocallagh, A. H. Shingler, S. M. Kirby, and A. Morris, Antimicrob. Agents Chemother. 1, 283 (1972).

    Article  Google Scholar 

  13. 13

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

    Article  Google Scholar 

  14. 14

    J. G. Gordon and J. D. Swalen, Opt. Commun. 22, 374 (1977).

    Article  Google Scholar 

  15. 15

    W. Knoll, M. Zizlsperger, T. Liebermann, S. Arnold, A. Badia, M. Liley, D. Piscevic, F. J. Schmitt, and J. Spinke, Colloids Surf., A 161, 115 (2000).

    Article  Google Scholar 

  16. 16

    http://www.piercenet.com

  17. 17

    G. L. Kenausis, J. Vörös, D. L. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J. A. Hubbell, and N. D. Spencer, J. Phys. Chem. B 104, 3298 (2000).

    Article  Google Scholar 

  18. 18

    N. Huang, R. Michel, J. Vörös, M. Textor, R. Hofer, A. Rossi, D. L. Elbert, J. A. Hubbell, and N. D. Spencer, Langmuir 17, 489 (2001).

    Article  Google Scholar 

  19. 19

    J. Vörös, J. J. Ramsden, G. Csucs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002).

    Article  Google Scholar 

  20. 20

    J. A. de Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  Google Scholar 

  21. 21

    L. S. Jung, K. E. Nelson, C. T. Campbell, P. S. Stayton, S. S. Yee, V. Perez-Luna, and G. P. Lopez, Sens. Actuators B 54, 137 (1999).

    Article  Google Scholar 

  22. 22

    W. Knoll, L. Angermaier, G. Batz, T. Fritz, S. Fujisawa, T. Furuno, H. J. Guder, M. Hara, M. Liley, K. Niki, and J. Spinke, Synth. Met. 61, 5 (1993).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Knoll.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, F., Zhen, G., Textor, M. et al. Surface plasmon optical detection of β-lactamase binding to different interfacial matrices combined with fiber optic absorbance spectroscopy for enzymatic activity assays. Biointerphases 1, 73–81 (2006). https://doi.org/10.1116/1.2219109

Download citation