Skip to main content

Journal for Biophysical Chemistry

Nanosized particles in bone and dissolution insensitivity of bone mineral

Abstract

Most of the mineral crystals in bone are platelets of carbonated apatite with thicknesses of a few nanometers embedded in a collagen matrix.We report that spherical to cylindrical shaped nanosized particles are also an integral part of bone structure observed by high resolution scanning electron microscopy. High resolution back scattered electron imaging reveals that the spherical particles have a contrast similar to the crystal platelets, suggesting that they are thus likely to have similar mineral properties. By means of constant composition (CC) dissolution of bone, similar sized nanoparticles are shown to be insensitive to demineralization and are thought to be dynamically stabilized due to the absence of active pits/defects on the crystallite surfaces. Similar reproducible self-inhibited dissolution was observed with these nanoparticles during CC dissolution of synthetic carbonated apatite. This result rules out the possible influence of complicating biological factors such as the possible presence of organic matrix components and other impurities. This phenomenon can be explained by a unique dissolution model involving size considerations at the nanoscale. The unexpected presence of nanoparticles in mature bone may also be due to the stabilization of some nanosized particles during the formation process in a fluctuating biological milieux.

References

  1. J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Med. Eng. Phys. 20, 92 (1998).

    Article  CAS  Google Scholar 

  2. S. Weiner and H. D. Wagner, Annu. Rev. Mater. Sci. 28, 271 (1998).

    Article  CAS  Google Scholar 

  3. W. J. Landis, Bone (N.Y.) 16, 533 (1995).

    Article  CAS  Google Scholar 

  4. W. J. Landis and K. J. Hodgens, J. Struct. Biol. 117, 24 (1996).

    Article  CAS  Google Scholar 

  5. P. Roschger, B. M. Grabner, S. Rinnerthaler, W. Tesch, M. Kneissel, A. Berzlanovich, K. Klaushofer, and P. Fratzl, J. Struct. Biol. 136, 126 (2001).

    Article  CAS  Google Scholar 

  6. H. Gao, B. Ji, L. J. Ingomar, E. Arz, and P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).

    Article  CAS  Google Scholar 

  7. R. K. Tang, L. J. Wang, C. A. Orme, T. Bonstein, P. J. Bush, and G. H. Nancollas, Angew. Chem., Int. Ed. 43, 2697 (2004).

    Article  CAS  Google Scholar 

  8. S. Weiner and P. A. Price, Calcif. Tissue Int. 39, 365 (1986).

    Article  CAS  Google Scholar 

  9. L. J. Shyu, L. Perez, S. J. Zawacki, J. C. Heughebaert, and G. H. Nancollas, J. Dent. Res. 62, 398 (1982).

    Google Scholar 

  10. M. B. Tomson and G. H. Nancollas, Science 200, 1059 (1978).

    Article  CAS  Google Scholar 

  11. T. Hassenkam, G. E. Fantner, J. A. Cutroni, J. C. Weaver, D. E. Morse, and P. K. Hansma, Bone N.Y. 35, 4 (2004).

    Article  Google Scholar 

  12. R. Z. LeGeros and M. S. Tung, Caries Res. 17, 419 (1983).

    Article  CAS  Google Scholar 

  13. A. A. Baig et al., Calcif. Tissue Int. 64, 437 (1999).

    Article  CAS  Google Scholar 

  14. Kinetic Theory in Earth Sciences, Princeton Series in Geochemistry, edited by A. C. Lasaga (Princeton University Press, Princeton, NJ, 1998).

    Google Scholar 

  15. A. Lüttge, J. Electron Spectrosc. Relat. Phenom. 150, 248 (2006).

    Article  Google Scholar 

  16. P. M. Dove, N. Han, and J. J. De Yoreo, Proc. Natl. Acad. Sci. U.S.A. 102, 15357 (2005).

    Article  CAS  Google Scholar 

  17. R. K. Tang, G. H. Nancollas, and C. A. Orme, J. Am. Chem. Soc. 123, 5437 (2001).

    Article  CAS  Google Scholar 

  18. A. C. Lasaga and A. Lüttge, Science 291, 2400 (2001).

    Article  CAS  Google Scholar 

  19. W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).

    Article  Google Scholar 

  20. R. K. Tang, C. A. Orme, and G. H. Nancollas, J. Phys. Chem. B 107, 10653 (2003).

    Article  CAS  Google Scholar 

  21. L. J. Wang, R. K. Tang, T. Bonstein, C. A. Orme, P. J. Bush, and G. H. Nancollas, J. Phys. Chem. B 109, 999 (2005).

    Article  CAS  Google Scholar 

  22. L. J. Wang, R. K. Tang, T. Bonstein, P. J. Bush, and G. H. Nancollas, J. Dent. Res. 85, 359 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Nancollas, G.H., Henneman, Z.J. et al. Nanosized particles in bone and dissolution insensitivity of bone mineral. Biointerphases 1, 106–111 (2006). https://doi.org/10.1116/1.2354575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2354575