Skip to main content


Journal for Biophysical Chemistry

Biointerphases Cover Image

Nanosized particles in bone and dissolution insensitivity of bone mineral

Article metrics


Most of the mineral crystals in bone are platelets of carbonated apatite with thicknesses of a few nanometers embedded in a collagen matrix.We report that spherical to cylindrical shaped nanosized particles are also an integral part of bone structure observed by high resolution scanning electron microscopy. High resolution back scattered electron imaging reveals that the spherical particles have a contrast similar to the crystal platelets, suggesting that they are thus likely to have similar mineral properties. By means of constant composition (CC) dissolution of bone, similar sized nanoparticles are shown to be insensitive to demineralization and are thought to be dynamically stabilized due to the absence of active pits/defects on the crystallite surfaces. Similar reproducible self-inhibited dissolution was observed with these nanoparticles during CC dissolution of synthetic carbonated apatite. This result rules out the possible influence of complicating biological factors such as the possible presence of organic matrix components and other impurities. This phenomenon can be explained by a unique dissolution model involving size considerations at the nanoscale. The unexpected presence of nanoparticles in mature bone may also be due to the stabilization of some nanosized particles during the formation process in a fluctuating biological milieux.


  1. 1

    J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Med. Eng. Phys. 20, 92 (1998).

  2. 2

    S. Weiner and H. D. Wagner, Annu. Rev. Mater. Sci. 28, 271 (1998).

  3. 3

    W. J. Landis, Bone (N.Y.) 16, 533 (1995).

  4. 4

    W. J. Landis and K. J. Hodgens, J. Struct. Biol. 117, 24 (1996).

  5. 5

    P. Roschger, B. M. Grabner, S. Rinnerthaler, W. Tesch, M. Kneissel, A. Berzlanovich, K. Klaushofer, and P. Fratzl, J. Struct. Biol. 136, 126 (2001).

  6. 6

    H. Gao, B. Ji, L. J. Ingomar, E. Arz, and P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).

  7. 7

    R. K. Tang, L. J. Wang, C. A. Orme, T. Bonstein, P. J. Bush, and G. H. Nancollas, Angew. Chem., Int. Ed. 43, 2697 (2004).

  8. 8

    S. Weiner and P. A. Price, Calcif. Tissue Int. 39, 365 (1986).

  9. 9

    L. J. Shyu, L. Perez, S. J. Zawacki, J. C. Heughebaert, and G. H. Nancollas, J. Dent. Res. 62, 398 (1982).

  10. 10

    M. B. Tomson and G. H. Nancollas, Science 200, 1059 (1978).

  11. 11

    T. Hassenkam, G. E. Fantner, J. A. Cutroni, J. C. Weaver, D. E. Morse, and P. K. Hansma, Bone N.Y. 35, 4 (2004).

  12. 12

    R. Z. LeGeros and M. S. Tung, Caries Res. 17, 419 (1983).

  13. 13

    A. A. Baig et al., Calcif. Tissue Int. 64, 437 (1999).

  14. 14

    Kinetic Theory in Earth Sciences, Princeton Series in Geochemistry, edited by A. C. Lasaga (Princeton University Press, Princeton, NJ, 1998).

  15. 15

    A. Lüttge, J. Electron Spectrosc. Relat. Phenom. 150, 248 (2006).

  16. 16

    P. M. Dove, N. Han, and J. J. De Yoreo, Proc. Natl. Acad. Sci. U.S.A. 102, 15357 (2005).

  17. 17

    R. K. Tang, G. H. Nancollas, and C. A. Orme, J. Am. Chem. Soc. 123, 5437 (2001).

  18. 18

    A. C. Lasaga and A. Lüttge, Science 291, 2400 (2001).

  19. 19

    W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).

  20. 10

    R. K. Tang, C. A. Orme, and G. H. Nancollas, J. Phys. Chem. B 107, 10653 (2003).

  21. 21

    L. J. Wang, R. K. Tang, T. Bonstein, C. A. Orme, P. J. Bush, and G. H. Nancollas, J. Phys. Chem. B 109, 999 (2005).

  22. 22

    L. J. Wang, R. K. Tang, T. Bonstein, P. J. Bush, and G. H. Nancollas, J. Dent. Res. 85, 359 (2006).

Download references

Author information

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article