Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Kinetic and affinity analyses of hybridization reactions between peptide nucleic acid probes and DNA targets using surface plasmon field-enhanced fluorescence spectroscopy


Peptide nucleic acid (PNA), a polyamide DNA mimic, has inspired the development of a variety of hybridization-based methods for the detection, quantification, purification, and characterization of nucleic acids owing to the stability of the PNA/DNA duplex. In this work, PNA probes complementary to a specific sequence of Roundup Ready® soybean were immobilized onto a sensor surface via a self-assembled matrix employing streptavidin/biotin binding. The specific hybridization of PNA and DNA has been monitored by applying the chromophore-labeled DNA target oligonucleotides to the PNA modified Au sensor surface in real time using surface plasmon field-enhanced fluorescence spectroscopy. The authors demonstrate three kinds of experiments called global, titration, and kinetic analyses for the determination of rate constants for the association (k on) and dissociation processes (k off, and the affinity constant (K A) of the PNA/DNA duplex formation by fitting the data to a simple Langmuir model. Discrimination of a single base mismatched DNA (15mer) target on a 15mer PNA probe was documented, with a difference of the affinity constant of two orders of magnitude. Finally, the affinity constant for the hybridization of a long polymerase chain reaction product (169mer) obtained by amplification of DNA extracted from genetically modified soybean reference material has been determined by a kinetic-titration analysis. The results show the influence of a Coulomb barrier at high target surface coverage even for the hybridization to PNA at low ionic strength.


  1. 1

    P.-E. Nielsen, M. Egholm, R.-H. Berg, and O. Buchardt, Science 254, 1497 (1991).

    Article  CAS  Google Scholar 

  2. 2

    M. Egholm et al., Nature (London) 365, 566 (1993).

    Article  CAS  Google Scholar 

  3. 3

    P.-E. Nielsen and L. Christensen, J. Am. Chem. Soc. 118, 2287 (1996).

    Article  CAS  Google Scholar 

  4. 4

    A. Mugweru, B.-Q. Wang, and J. Rusling, Anal. Chem. 76, 5557 (2004).

    Article  CAS  Google Scholar 

  5. 5

    L.-A. Bottomley, M.-A. Poggi, and S.-X. Shen, Anal. Chem. 76, 5685 (2004).

    Article  CAS  Google Scholar 

  6. 6

    T.-H. Ha, S. Kim, G. Lim, and K. Kim, Biosens. Bioelectron. 20, 378 (2004).

    Article  CAS  Google Scholar 

  7. 7

    W. Knoll, Annu. Rev. Phys. Chem. 49, 565 (1998).

    Article  Google Scholar 

  8. 8

    T. Liebermann, W. Knoll, P. Sluka, and R. Herrmann, Colloids Surf., A 169, 337 (2000).

    Article  CAS  Google Scholar 

  9. 9

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

    Article  CAS  Google Scholar 

  10. 10

    K. Vasilev, W. Knoll, and M. Kreiter, J. Chem. Phys. 120, 3439 (2004).

    Article  CAS  Google Scholar 

  11. 11

    J. Spinke, M. Liley, H.-J. Guder, L. Angermaier, and W. Knoll, Langmuir 9, 1821 (1993).

    Article  CAS  Google Scholar 

  12. 12

    W. Knoll, H. Park, E.-K. Sinner, D. Yao, and F. Yu, Surf. Sci. 570, 30 (2004).

    Article  CAS  Google Scholar 

  13. 13

    L.-D. Roden and D.-G. Myszkal, Biochem. Biophys. Res. Commun. 225, 1073 (1996).

    Article  CAS  Google Scholar 

  14. 14

    N.-J. Mol, E. Plomp, M.-J.-E. Fischer, and R. Ruijtenbeek, Anal. Biochem. 279, 61 (2000).

    Article  Google Scholar 

  15. 15

    T.-A. Morton, D.-G. Myszkal, and I.-M. Chaiken, Anal. Biochem. 227, 176 (1995).

    Article  CAS  Google Scholar 

  16. 16

    D. Kambhampati, P.-E. Nielsen, and W. Knoll, Biosens. Bioelectron. 16, 1109 (2001).

    Article  CAS  Google Scholar 

  17. 17

    K. Tawa and W. Knoll, Nucleic Acids Res. 32, 2372 (2004).

    Article  CAS  Google Scholar 

  18. 18

    W. Knoll, M. Liley, D. Piscevic, J. Spinke, and M.-J. Tarlov, Adv. Biophys. 34, 231 (1997).

    Article  CAS  Google Scholar 

  19. 19

    A. Germini, A. Zanetti, C. Salati, S. Rossi, and R. Marchelli, J. Agric. Food Chem. 52, 3275 (2004).

    Article  CAS  Google Scholar 

  20. 20

    A. Germini, A. Mezzelani, F. Lesignoli, R. Corradini, R. Marchelli, R. Bordoni, C. Consolandi, and G.-D. Bellis, J. Agric. Food Chem. 52, 4535 (2004).

    Article  CAS  Google Scholar 

  21. 21

    A. Germini, S. Rossi, A. Zanetti, R. Corradini, C. Fogher, and R. Marchelli, J. Agric. Food Chem. 53, 3958 (2005).

    Article  CAS  Google Scholar 

  22. 22

    F. Lesignoli, A. Germini, R. Corradini, S. Sforza, G. Galaverna, A. Dossena, and R. Marchelli, J. Chromatogr., A 922, 177 (2001).

    Article  CAS  Google Scholar 

  23. 23

    T. Neumann, M.-L. Johansson, D. Kambhampati, and W. Knoll, Adv. Funct. Mater. 12, 575 (2002).

    Article  CAS  Google Scholar 

  24. 24

    F. Yu, D. Yao, and W. Knoll, Nucleic Acids Res. 32, e75 (2004).

    Article  Google Scholar 

  25. 25

    D. Yao, F. Yu, J. Kim, J. Scholz, P.-E. Nielsen, E.-K. Sinner, and W. Knoll, Nucleic Acids Res. 32, e177 (2004).

    Article  Google Scholar 

  26. 26

    D. Yao, J. Kim, F. Yu, P.-E. Nielsen, E.-K. Sinner, and W. Knoll, Biophys. J. 88, 2745 (2005).

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, H., Germini, A., Sforza, S. et al. Kinetic and affinity analyses of hybridization reactions between peptide nucleic acid probes and DNA targets using surface plasmon field-enhanced fluorescence spectroscopy. Biointerphases 1, 113–122 (2006).

Download citation