Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Phagocytosis of poly (L-lysine)-graft-poly (ethylene glycol) coated microspheres by antigen presenting cells: Impact of grafting ratio and poly (ethylene glycol) chain length on cellular recognition

Article metrics

Abstract

Microparticulate carrier systems have significant potential for antigen delivery. The authors studied how microspheres coated with the polycationic copolymer poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) can be protected against unspecific phagocytosis by antigen presenting cells, a prerequisite for selective targeting of phagocytic receptors. For this aim the authors explored the influence of PLL-g-PEG architecture on recognition of coated microspheres by antigen presenting cells with regard to both grafting ratio and molecular weight of the grafted PEG chains. Carboxylated polystyrene microspheres (5 μm) were coated with a small library of PLL-g-PEG polymers with PLL backbones of 20 kDa, grafting ratios from 2 to 20, and PEG side chains of 1–5 kDa. The coated microspheres were characterized by their ζ-potential and resistance to IgG adsorption. Phagocytosis of these microspheres by human monocyte derived dendritic cells (DCs) and macrophages (MΦ) was quantified by phase contrast microscopy and by analysis of the cells’ side scattering in a flow cytometer. Generally, increasing grafting ratios impaired the protein resistance of coated microspheres, leading to higher phagocytosis rates. For DC, long PEG chains of 5 kDa decreased the phagocytosis of coated microspheres even in the case of considerable IgG adsorption. In addition, preferential adsorption of dysopsonins is discussed as another factor for decreased phagocytosis rates. For comparison, the authors studied the cellular adhesion of DC and Mζ to PLL-g-PEG coated microscopy slides. Remarkably, DC and Mζ were found to adhere to relatively protein-resistant PLL-g-PEG adlayers, whereas phagocytosis of microspheres coated with the same copolymers was inefficient. Overall, PLL(20)-[3.5]-PEG(2) was identified as the optimal copolymer to ensure resistance to both phagocytosis and cell adhesion. Finally, the authors studied coatings made from binary mixtures of PLL-g-PEG type copolymers that led to microspheres with combined properties. This enables future studies on cell targeting with ligand modified copolymers.

References

  1. 1

    C.-S. Ha and A. Gardella Joseph, Jr., Chem. Rev. (Washington, D.C.) 105, 4205 (2005).

  2. 2

    L. Thiele, H. P. Merkle, and E. Walter, Expert Review of Vaccines 1, 215 (2002).

  3. 3

    S. Svenson, ACS Symp. Ser. 879, 2 (2004).

  4. 4

    Y. Men, H. Tamber, R. Audran, B. Gander, and G. Corradin, Vaccine 15, 1405 (1997).

  5. 5

    K. Peter, Y. Men, G. Pantaleo, B. Gander, and G. Corradin, Vaccine 19, 4121 (2001).

  6. 6

    C. D. Partidos, P. Vohra, D. H. Jones, G. H. Farrar, and M. W. Steward, J. Immunol. Methods 195, 135 (1996).

  7. 7

    M. Kovacsovics-Bankowski, K. Clark, B. Benacerraf, and K. L. Rock, Proc. Natl. Acad. Sci. U.S.A. 90, 4942 (1993).

  8. 8

    L. M. Stuart and R. A. B. Ezekowitz, Immunity 22, 539 (2005).

  9. 9

    F. Walter, I. Scholl, E. Untersmayr, A. Ellinger, G. Boltz-Nitulescu, O. Scheiner, F. Gabor, and E. Jensen-Jarolim, Biochem. Biophys. Res. Commun. 315, 281 (2004).

  10. 10

    M. Kempf, B. Mandal, S. Jilek, L. Thiele, J. Vörös, M. Textor, H. P. Merkle, and E. Walter, J. Drug Target. 11, 11 (2003).

  11. 11

    M. J. Copland, M. A. Baird, T. Rades, J. L. McKenzie, B. Becker, F. Reck, P. C. Tyler, and N. M. Davies, Vaccine 21, 883 (2003).

  12. 12

    M. E. Keegan, J. A. Whittum-Hudson, and W. M. Saltzman, Biomaterials 24, 4435 (2003).

  13. 13

    R. L. Juliano, Adv. Drug Delivery Rev. 2, 31 (1988).

  14. 14

    L. Thiele, B. Rothen-Rutishauser, S. Jilek, H. Wunderli-Allenspach, H. P. Merkle, and E. Walter, J. Controlled Release 76, 59 (2001).

  15. 15

    C. Foged, B. Brodin, S. Frokjaer, and A. Sundblad, Int. J. Pharm. 298, 315 (2005).

  16. 16

    F. Ahsan, I. P. Rivas, M. A. Khan, and A. I. Torres Suarez, J. Controlled Release 79, 29 (2002).

  17. 17

    D. R. Absolom, Methods Enzymol. 132, 281 (1986).

  18. 18

    H. M. Patel, Crit. Rev. Ther. Drug Carrier Syst. 9, 39 (1992).

  19. 19

    L. Thiele, J. E. Diederichs, R. Reszka, H. P. Merkle, and E. Walter, Biomaterials 24, 1409 (2003).

  20. 20

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

  21. 21

    S. M. Moghimi, A. C. Hunter, and J. C. Murray, Pharmacol. Rev. 53, 283 (2001).

  22. 22

    R. Gref and P. Couvreur, Encyclopedia of Nanoscience and Nanotechnology (American Scientific, Valencia, CA, 2004), Vol. 10, 83.

  23. 23

    J. M. Harris and S. Zalipsky, ACS Symp. Ser. 680, 489 (1997).

  24. 24

    J. M. Harris and R. B. Chess, Nat. Rev. Drug Discovery 2, 214 (2003).

  25. 25

    P. Vermette and L. Meagher, Colloids Surf., B 28, 153 (2003).

  26. 26

    M. Morra, J. Biomater. Sci., Polym. Ed. 11, 547 (2000).

  27. 27

    S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, J. Colloid Interface Sci. 142, 149 (1991).

  28. 28

    S. I. Jeon and J. D. Andrade, J. Colloid Interface Sci. 142, 159 (1991).

  29. 29

    A. Halperin, Langmuir 15, 2525 (1999).

  30. 30

    B. Zhu, T. Eurell, R. Gunawan, and D. Leckband, J. Biomed. Mater. Res. 56, 406 (2001).

  31. 31

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

  32. 32

    T. McPherson, A. Kidane, I. Szleifer, and K. Park, Langmuir 14, 176 (1998).

  33. 33

    M. Malmsten, K. Emoto, and J. M. Van Alstine, J. Colloid Interface Sci. 202, 507 (1998).

  34. 34

    P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials 23, 2043 (2002).

  35. 35

    S. Pasche, S. M. De Paul, J. Vörös, N. D. Spencer, and M. Textor, Langmuir 19, 9216 (2003).

  36. 36

    N.-P. Huang et al., Langmuir 17, 489 (2001).

  37. 37

    G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 (2000).

  38. 38

    L. Feuz, F. A. M. Leermakers, M. Textor, and O. Borisov, Macromolecules 38, 8891 (2005).

  39. 39

    M. Müller, J. Vörös, G. Csúcs, E. Walter, G. Danuser, H. P. Merkle, N. D. Spencer, and M. Textor, J. Biomed. Mater. Res., A 66A, 55 (2003).

  40. 40

    S. VandeVondele, J. Vörös, and J. A. Hubbell, Biotechnol. Bioeng. 82, 784 (2003).

  41. 41

    N.-P. Huang, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).

  42. 42

    S. Tosatti, S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall, and M. Textor, Biomaterials 24, 4949 (2003).

  43. 43

    F. Meng, G. H. M. Engbers, A. Gessner, R. H. Mueller, and J. Feijen, J. Biomed. Mater. Res., A 70A, 97 (2004).

  44. 44

    R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R. H. Muller, Colloids Surf., B 18, 301 (2000).

  45. 45

    F. X. Lacasse, M. C. Filion, N. C. Phillips, E. Escher, J. N. McMullen, and P. Hildgen, Pharm. Res. 15, 312 (1998).

  46. 46

    R. Heuberger, G. Sukhorukov, J. Vörös, M. Textor, and H. Moehwald, Adv. Funct. Mater. 15, 357 (2005).

  47. 47

    S. Faraasen, J. Vörös, G. Csucs, M. Textor, H. P. Merkle, and E. Walter, Pharm. Res. 20, 237 (2003).

  48. 48

    F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, J. Exp. Med. 182, 389 (1995).

  49. 49

    S. Pasch, Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 2004.

  50. 50

    See EPAPS Document No. E-BJIOBN-1-003604 for details on the gating strategy. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http:// www.aip.org/pubservs/epaps.html).

  51. 51

    B. Stringer, A. Imrich, and L. Kobzik, Cytometry 20, 23 (1995).

  52. 52

    See EPAPS Document No. E-BJIOBN-50-003604 for phase contrast and confocal microscopy images on the intracellular localization of the microspheres. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http:// www.aip.org/pubservs/epaps.html).

  53. 53

    D. R. Parks and L. A. Herzenberg, Methods Enzymol. 108, 197 (1984).

  54. 54

    V. Olivier, C. Riviere, M. Hindie, J. L. Duval, G. Bomila-Koradjim, and M. D. Nagel, Colloids Surf., B 33, 23 (2004).

  55. 55

    J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Biochem. J. 377, 159 (2004).

  56. 56

    C. C. Stewart, B. E. Lehnert, and J. A. Steinkamp, Methods Enzymol. 132, 183 (1986).

  57. 57

    S. Pasche, M. Textor, L. Meagher, N. D. Spencer, and H. J. Griesser, Langmuir 21, 6508 (2005).

  58. 58

    J. K. Gbadamosi, A. C. Hunter, and S. M. Moghimi, FEBS Lett. 532, 338 (2002).

  59. 59

    T. Ishida, H. Harashima, and H. Kiwada, Biosci Rep. 22, 197 (2002).

  60. 60

    S. A. Johnstone, D. Masin, L. Mayer, and M. B. Bally, Biomembranes 1513, 25 (2001).

  61. 61

    S. M. Moghimi, I. S. Muir, L. Illum, S. S. Davis, and V. Kolb-Bachofen, Biochim. Biophys. Acta 1179, 157 (1993).

  62. 62

    S. M. Moghimi and J. Szebeni, Prog. Lipid Res. 42, 463 (2003).

  63. 63

    A. Mori, A. L. Klibanov, V. P. Torchilin, and L. Huang, FEBS Lett. 284, 263 (1991).

  64. 64

    S. G. Kiama, L. Cochand, L. Karlsson, L. P. Nicod, and P. Gehr, J. Aerosol Med. 14, 289 (2001).

  65. 65

    S. P. Massia and J. A. Hubbell, J. Cell Biol. 114, 1089 (1991).

Download references

Author information

Correspondence to Hans P. Merkle.

Rights and permissions

Reprints and Permissions

About this article