Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Phagocytosis of poly (L-lysine)-graft-poly (ethylene glycol) coated microspheres by antigen presenting cells: Impact of grafting ratio and poly (ethylene glycol) chain length on cellular recognition

Abstract

Microparticulate carrier systems have significant potential for antigen delivery. The authors studied how microspheres coated with the polycationic copolymer poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) can be protected against unspecific phagocytosis by antigen presenting cells, a prerequisite for selective targeting of phagocytic receptors. For this aim the authors explored the influence of PLL-g-PEG architecture on recognition of coated microspheres by antigen presenting cells with regard to both grafting ratio and molecular weight of the grafted PEG chains. Carboxylated polystyrene microspheres (5 μm) were coated with a small library of PLL-g-PEG polymers with PLL backbones of 20 kDa, grafting ratios from 2 to 20, and PEG side chains of 1–5 kDa. The coated microspheres were characterized by their ζ-potential and resistance to IgG adsorption. Phagocytosis of these microspheres by human monocyte derived dendritic cells (DCs) and macrophages (MΦ) was quantified by phase contrast microscopy and by analysis of the cells’ side scattering in a flow cytometer. Generally, increasing grafting ratios impaired the protein resistance of coated microspheres, leading to higher phagocytosis rates. For DC, long PEG chains of 5 kDa decreased the phagocytosis of coated microspheres even in the case of considerable IgG adsorption. In addition, preferential adsorption of dysopsonins is discussed as another factor for decreased phagocytosis rates. For comparison, the authors studied the cellular adhesion of DC and Mζ to PLL-g-PEG coated microscopy slides. Remarkably, DC and Mζ were found to adhere to relatively protein-resistant PLL-g-PEG adlayers, whereas phagocytosis of microspheres coated with the same copolymers was inefficient. Overall, PLL(20)-[3.5]-PEG(2) was identified as the optimal copolymer to ensure resistance to both phagocytosis and cell adhesion. Finally, the authors studied coatings made from binary mixtures of PLL-g-PEG type copolymers that led to microspheres with combined properties. This enables future studies on cell targeting with ligand modified copolymers.

References

  1. 1

    C.-S. Ha and A. Gardella Joseph, Jr., Chem. Rev. (Washington, D.C.) 105, 4205 (2005).

    CAS  Google Scholar 

  2. 2

    L. Thiele, H. P. Merkle, and E. Walter, Expert Review of Vaccines 1, 215 (2002).

    Article  CAS  Google Scholar 

  3. 3

    S. Svenson, ACS Symp. Ser. 879, 2 (2004).

    Article  CAS  Google Scholar 

  4. 4

    Y. Men, H. Tamber, R. Audran, B. Gander, and G. Corradin, Vaccine 15, 1405 (1997).

    Article  CAS  Google Scholar 

  5. 5

    K. Peter, Y. Men, G. Pantaleo, B. Gander, and G. Corradin, Vaccine 19, 4121 (2001).

    Article  CAS  Google Scholar 

  6. 6

    C. D. Partidos, P. Vohra, D. H. Jones, G. H. Farrar, and M. W. Steward, J. Immunol. Methods 195, 135 (1996).

    Article  CAS  Google Scholar 

  7. 7

    M. Kovacsovics-Bankowski, K. Clark, B. Benacerraf, and K. L. Rock, Proc. Natl. Acad. Sci. U.S.A. 90, 4942 (1993).

    Article  CAS  Google Scholar 

  8. 8

    L. M. Stuart and R. A. B. Ezekowitz, Immunity 22, 539 (2005).

    Article  CAS  Google Scholar 

  9. 9

    F. Walter, I. Scholl, E. Untersmayr, A. Ellinger, G. Boltz-Nitulescu, O. Scheiner, F. Gabor, and E. Jensen-Jarolim, Biochem. Biophys. Res. Commun. 315, 281 (2004).

    Article  CAS  Google Scholar 

  10. 10

    M. Kempf, B. Mandal, S. Jilek, L. Thiele, J. Vörös, M. Textor, H. P. Merkle, and E. Walter, J. Drug Target. 11, 11 (2003).

    Article  CAS  Google Scholar 

  11. 11

    M. J. Copland, M. A. Baird, T. Rades, J. L. McKenzie, B. Becker, F. Reck, P. C. Tyler, and N. M. Davies, Vaccine 21, 883 (2003).

    Article  CAS  Google Scholar 

  12. 12

    M. E. Keegan, J. A. Whittum-Hudson, and W. M. Saltzman, Biomaterials 24, 4435 (2003).

    Article  CAS  Google Scholar 

  13. 13

    R. L. Juliano, Adv. Drug Delivery Rev. 2, 31 (1988).

    Article  CAS  Google Scholar 

  14. 14

    L. Thiele, B. Rothen-Rutishauser, S. Jilek, H. Wunderli-Allenspach, H. P. Merkle, and E. Walter, J. Controlled Release 76, 59 (2001).

    Article  CAS  Google Scholar 

  15. 15

    C. Foged, B. Brodin, S. Frokjaer, and A. Sundblad, Int. J. Pharm. 298, 315 (2005).

    Article  CAS  Google Scholar 

  16. 16

    F. Ahsan, I. P. Rivas, M. A. Khan, and A. I. Torres Suarez, J. Controlled Release 79, 29 (2002).

    Article  CAS  Google Scholar 

  17. 17

    D. R. Absolom, Methods Enzymol. 132, 281 (1986).

    Article  CAS  Google Scholar 

  18. 18

    H. M. Patel, Crit. Rev. Ther. Drug Carrier Syst. 9, 39 (1992).

    CAS  Google Scholar 

  19. 19

    L. Thiele, J. E. Diederichs, R. Reszka, H. P. Merkle, and E. Walter, Biomaterials 24, 1409 (2003).

    Article  CAS  Google Scholar 

  20. 20

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

    Article  CAS  Google Scholar 

  21. 21

    S. M. Moghimi, A. C. Hunter, and J. C. Murray, Pharmacol. Rev. 53, 283 (2001).

    CAS  Google Scholar 

  22. 22

    R. Gref and P. Couvreur, Encyclopedia of Nanoscience and Nanotechnology (American Scientific, Valencia, CA, 2004), Vol. 10, 83.

    Google Scholar 

  23. 23

    J. M. Harris and S. Zalipsky, ACS Symp. Ser. 680, 489 (1997).

    Google Scholar 

  24. 24

    J. M. Harris and R. B. Chess, Nat. Rev. Drug Discovery 2, 214 (2003).

    Article  CAS  Google Scholar 

  25. 25

    P. Vermette and L. Meagher, Colloids Surf., B 28, 153 (2003).

    Article  CAS  Google Scholar 

  26. 26

    M. Morra, J. Biomater. Sci., Polym. Ed. 11, 547 (2000).

    Article  CAS  Google Scholar 

  27. 27

    S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, J. Colloid Interface Sci. 142, 149 (1991).

    Article  CAS  Google Scholar 

  28. 28

    S. I. Jeon and J. D. Andrade, J. Colloid Interface Sci. 142, 159 (1991).

    Article  CAS  Google Scholar 

  29. 29

    A. Halperin, Langmuir 15, 2525 (1999).

    Article  CAS  Google Scholar 

  30. 30

    B. Zhu, T. Eurell, R. Gunawan, and D. Leckband, J. Biomed. Mater. Res. 56, 406 (2001).

    Article  CAS  Google Scholar 

  31. 31

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    Article  CAS  Google Scholar 

  32. 32

    T. McPherson, A. Kidane, I. Szleifer, and K. Park, Langmuir 14, 176 (1998).

    Article  CAS  Google Scholar 

  33. 33

    M. Malmsten, K. Emoto, and J. M. Van Alstine, J. Colloid Interface Sci. 202, 507 (1998).

    Article  CAS  Google Scholar 

  34. 34

    P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials 23, 2043 (2002).

    Article  CAS  Google Scholar 

  35. 35

    S. Pasche, S. M. De Paul, J. Vörös, N. D. Spencer, and M. Textor, Langmuir 19, 9216 (2003).

    Article  CAS  Google Scholar 

  36. 36

    N.-P. Huang et al., Langmuir 17, 489 (2001).

    Article  CAS  Google Scholar 

  37. 37

    G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 (2000).

    Article  CAS  Google Scholar 

  38. 38

    L. Feuz, F. A. M. Leermakers, M. Textor, and O. Borisov, Macromolecules 38, 8891 (2005).

    Article  CAS  Google Scholar 

  39. 39

    M. Müller, J. Vörös, G. Csúcs, E. Walter, G. Danuser, H. P. Merkle, N. D. Spencer, and M. Textor, J. Biomed. Mater. Res., A 66A, 55 (2003).

    Article  Google Scholar 

  40. 40

    S. VandeVondele, J. Vörös, and J. A. Hubbell, Biotechnol. Bioeng. 82, 784 (2003).

    Article  CAS  Google Scholar 

  41. 41

    N.-P. Huang, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).

    Article  CAS  Google Scholar 

  42. 42

    S. Tosatti, S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall, and M. Textor, Biomaterials 24, 4949 (2003).

    Article  CAS  Google Scholar 

  43. 43

    F. Meng, G. H. M. Engbers, A. Gessner, R. H. Mueller, and J. Feijen, J. Biomed. Mater. Res., A 70A, 97 (2004).

    Article  CAS  Google Scholar 

  44. 44

    R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R. H. Muller, Colloids Surf., B 18, 301 (2000).

    Article  CAS  Google Scholar 

  45. 45

    F. X. Lacasse, M. C. Filion, N. C. Phillips, E. Escher, J. N. McMullen, and P. Hildgen, Pharm. Res. 15, 312 (1998).

    Article  CAS  Google Scholar 

  46. 46

    R. Heuberger, G. Sukhorukov, J. Vörös, M. Textor, and H. Moehwald, Adv. Funct. Mater. 15, 357 (2005).

    Article  CAS  Google Scholar 

  47. 47

    S. Faraasen, J. Vörös, G. Csucs, M. Textor, H. P. Merkle, and E. Walter, Pharm. Res. 20, 237 (2003).

    Article  CAS  Google Scholar 

  48. 48

    F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, J. Exp. Med. 182, 389 (1995).

    Article  CAS  Google Scholar 

  49. 49

    S. Pasch, Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 2004.

  50. 50

    See EPAPS Document No. E-BJIOBN-1-003604 for details on the gating strategy. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http:// www.aip.org/pubservs/epaps.html).

  51. 51

    B. Stringer, A. Imrich, and L. Kobzik, Cytometry 20, 23 (1995).

    Article  CAS  Google Scholar 

  52. 52

    See EPAPS Document No. E-BJIOBN-50-003604 for phase contrast and confocal microscopy images on the intracellular localization of the microspheres. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http:// www.aip.org/pubservs/epaps.html).

  53. 53

    D. R. Parks and L. A. Herzenberg, Methods Enzymol. 108, 197 (1984).

    Article  CAS  Google Scholar 

  54. 54

    V. Olivier, C. Riviere, M. Hindie, J. L. Duval, G. Bomila-Koradjim, and M. D. Nagel, Colloids Surf., B 33, 23 (2004).

    Article  CAS  Google Scholar 

  55. 55

    J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Biochem. J. 377, 159 (2004).

    Article  CAS  Google Scholar 

  56. 56

    C. C. Stewart, B. E. Lehnert, and J. A. Steinkamp, Methods Enzymol. 132, 183 (1986).

    Article  CAS  Google Scholar 

  57. 57

    S. Pasche, M. Textor, L. Meagher, N. D. Spencer, and H. J. Griesser, Langmuir 21, 6508 (2005).

    Article  CAS  Google Scholar 

  58. 58

    J. K. Gbadamosi, A. C. Hunter, and S. M. Moghimi, FEBS Lett. 532, 338 (2002).

    Article  CAS  Google Scholar 

  59. 59

    T. Ishida, H. Harashima, and H. Kiwada, Biosci Rep. 22, 197 (2002).

    Article  CAS  Google Scholar 

  60. 60

    S. A. Johnstone, D. Masin, L. Mayer, and M. B. Bally, Biomembranes 1513, 25 (2001).

    Article  CAS  Google Scholar 

  61. 61

    S. M. Moghimi, I. S. Muir, L. Illum, S. S. Davis, and V. Kolb-Bachofen, Biochim. Biophys. Acta 1179, 157 (1993).

    Article  CAS  Google Scholar 

  62. 62

    S. M. Moghimi and J. Szebeni, Prog. Lipid Res. 42, 463 (2003).

    Article  CAS  Google Scholar 

  63. 63

    A. Mori, A. L. Klibanov, V. P. Torchilin, and L. Huang, FEBS Lett. 284, 263 (1991).

    Article  CAS  Google Scholar 

  64. 64

    S. G. Kiama, L. Cochand, L. Karlsson, L. P. Nicod, and P. Gehr, J. Aerosol Med. 14, 289 (2001).

    Article  CAS  Google Scholar 

  65. 65

    S. P. Massia and J. A. Hubbell, J. Cell Biol. 114, 1089 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans P. Merkle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wattendorf, U., Koch, M.C., Walter, E. et al. Phagocytosis of poly (L-lysine)-graft-poly (ethylene glycol) coated microspheres by antigen presenting cells: Impact of grafting ratio and poly (ethylene glycol) chain length on cellular recognition. Biointerphases 1, 123–133 (2006). https://doi.org/10.1116/1.2409645

Download citation