Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Enhancement of poly (ethylene glycol) mucoadsorption by biomimetic end group functionalization

Abstract

Poly(ethylene glycol) (PEG) is widely used in the pharmaceutical, biotechnology, and medical device industries. Although PEG is a biocompatible polymer that has enjoyed widespread use in drug delivery technology, it is not considered adhesive toward mucosal tissue. Here the authors describe a simple approach to enhancing mucoadsorption of PEG polymers through end group functionalization with the amino acid 3,4-dihydroxyphenyl-l-alanine (DOPA). Using a variety of surface analytical techniques, the authors show that a four-armed poly(ethylene glycol) polymer functionalized with a single DOPA residue at the terminus of each arm (PEG-(DOPA)4 adsorbed strongly to surface immobilized mucin. Successful mucoadsorption of PEG-(DOPA)4 across several pH values ranging from 4.5 to 8.5 was demonstrated, and control experiments with unfunctionalized four-arm PEG demonstrated that mucoadsorption of PEG-(DOPA)4 is due largely to the presence of DOPA end groups. This conclusion was confirmed with single molecule atomic force microscopy experiments that revealed a surprisingly strong interaction force of 371±93 pN between DOPA and adsorbed mucin. Direct comparisons with known mucoadhesive polymers revealed that PEG-(DOPA)4 was equal to or more adsorptive to immobilized mucin than these existing mucoadhesive polymers. In addition to demonstrating significant enhancement of mucoadhesive properties of PEG by DOPA functionalization, this study also introduced a new simple approach for rapid screening of mucoadhesive polymers.

References

  1. 1

    N. A. Peppas and Y. Huang, Adv. Drug Delivery Rev. 56, 1675 (2004).

    Article  CAS  Google Scholar 

  2. 2

    A. Bernkop-Schnurch, Adv. Drug Delivery Rev. 57, 1553 (2005).

    Article  Google Scholar 

  3. 3

    A. Ludwig, Adv. Drug Delivery Rev. 57, 1595 (2005).

    Article  CAS  Google Scholar 

  4. 4

    M. I. Ugwoke, R. U. Agu, N. Verbeke, and R. Kinget, Adv. Drug Delivery Rev. 57, 1640 (2005).

    Article  CAS  Google Scholar 

  5. 5

    N. Salamat-Miller, M. Chittchang, and T. P. Johnston, Adv. Drug Delivery Rev. 57, 1666 (2005).

    Article  CAS  Google Scholar 

  6. 6

    C. Valenta, Adv. Drug Delivery Rev. 57, 1692 (2005).

    Article  CAS  Google Scholar 

  7. 7

    V. Grabovac, D. Guggi, and A. Bernkop-Schnurch, Adv. Drug Delivery Rev. 57, 1713 (2005).

    Article  CAS  Google Scholar 

  8. 8

    J. Cleary, L. Bromberg, and E. Magner, Langmuir 20, 9755 (2004).

    Article  CAS  Google Scholar 

  9. 9

    V. R. Sinha, A. K. Singla, S. Wadhawan, R. Kaushik, R. Kumria,K. Bansal, and S. Dhawan, Int. J. Pharm. 274, 1 (2004).

    Article  CAS  Google Scholar 

  10. 10

    S. Kockisch, G. D. Rees, S. A. Young, J. Tsibouklis, and J. D. Smart, Int. J. Pharm. 276, 51 (2004).

    Article  CAS  Google Scholar 

  11. 11

    X. Zhu, J. DeGraaf, F. M. Winnik, and D. Leckband, Langmuir 20, 10648 (2004).

    Article  CAS  Google Scholar 

  12. 12

    K. Kafedjiiski, M. Werle, F. Foger, and A. Bernkop-Schnurch, J. Drug Delivery Sci. and Tech. 15, 411 (2005).

    CAS  Google Scholar 

  13. 13

    K. Maculotti, I. Genta, P. Perugini, M. Imam, A. Bernkop-Schnurch, and F. Pavanetto, J. Microencapsul. 22, 459 (2005).

    Article  CAS  Google Scholar 

  14. 14

    J. D. Smart, I. W. Kellaway, and H. E. C. Worthington, J. Pharm. Pharmacol. 36, 295 (1984).

    Article  CAS  Google Scholar 

  15. 15

    A. De Ascentiis, J. L. deGrazia, C. N. Bowman, P. Colombo, and N. A. Peppas, J. Controlled Release 33, 197 (1995).

    Article  CAS  Google Scholar 

  16. 16

    N. A. Peppas and A. G. Mikos, STP Pharma Sciences 5, 187 (1989).

    Google Scholar 

  17. 17

    H. Takeuchi, J. Thongborisute, Y. Matsui, H. Sugihara, H. Yamamoto, and Y. Kawashima, Adv. Drug Delivery Rev. 57, 1583 (2005).

    Article  CAS  Google Scholar 

  18. 18

    Y. Huang, W. Leobandung, A. Foss, and N. A. Peppas, J. Controlled Release 65, 63 (2000).

    Article  CAS  Google Scholar 

  19. 19

    M. P. Deacon, S. S. Davis, J. H. Waite, and S. E. Harding, Biochemistry 37, 14108 (1998).

    Article  CAS  Google Scholar 

  20. 20

    J. Schnurrer and C. M. Lehr, Int. J. Pharm. 141, 251 (1996).

    Article  CAS  Google Scholar 

  21. 21

    B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules 3, 1038 (2002).

    Article  CAS  Google Scholar 

  22. 22

    K. Huang, B. P. Lee, D. R. Ingram, and P. B. Messersmith, Biomacromolecules 3, 397 (2002).

    Article  CAS  Google Scholar 

  23. 23

    J. H. Waite, Int. J. Adhes. Adhes. 7, 9 (1987).

    Article  CAS  Google Scholar 

  24. 24

    J. H. Waite, Ann. N.Y. Acad. Sci. 875, 301 (1999).

    Article  CAS  Google Scholar 

  25. 25

    A. A. Ooka and R. L. Garrell, Biopolymers 57, 92 (2000).

    Article  CAS  Google Scholar 

  26. 26

    J. N. Hilfiker and R. A. Synowicki, Solid State Technol. 41, 101 (1998).

    CAS  Google Scholar 

  27. 27

    J. Voros, J. J. Ramsden, G. Csucs, I. Szendro, S. M. D. Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002).

    Article  CAS  Google Scholar 

  28. 28

    J. A. d. Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  Google Scholar 

  29. 29

    H. Lee, N. F. Scherer, and P. B. Messersmith, Proc. Natl. Acad. Sci. U.S.A. 103, 12999 (2006).

    Article  CAS  Google Scholar 

  30. 30

    J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    Article  CAS  Google Scholar 

  31. 31

    L. Shi and K. D. Caldwell, J. Colloid Interface Sci. 224, 372 (2000).

    Article  CAS  Google Scholar 

  32. 32

    J. Juna, J.-H. Shina, and M. Dhayal, Appl. Surf. Sci. 252, 3871 (2005).

    Article  Google Scholar 

  33. 33

    U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.-J. Guntherodt, and G. N. Misevic, Science 267, 1173 (1995).

    Article  CAS  Google Scholar 

  34. 34

    B. Lee, J. L. Dalsin, and P. B. Messersmith, in Biological Adhesives, A. M. Smith and J. A. Callow (Springer-Verlag, Berlin, 2006), pp 257–278.

    Google Scholar 

  35. 35

    J. H. Waite, N. H. Andersen, S. Jewhurst, and C. Sun, J. Adhes. 81, 1 (2005).

    Article  Google Scholar 

  36. 36

    J. Perez-Vilar and R. L. Hill, J. Biol. Chem. 274, 31751 (1999).

    Article  CAS  Google Scholar 

  37. 37

    W. Jiang, D. Gupta, D. Gallagher, S. Davis, and V. P. Bhavanandan, Eur. J. Biochem. 267, 2208 (2000).

    Article  CAS  Google Scholar 

  38. 38

    M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H. E. Gaub, Science 283, 1727 (1999).

    Article  CAS  Google Scholar 

  39. 39

    T. Sulchek, R. W. Friddle, and A. Noy, Biophys. J. 90, 4686 (2006).

    Article  CAS  Google Scholar 

  40. 40

    T. A. Sulchek et al., Proc. Natl. Acad. Sci. U.S.A. 102, 16638 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Phillip B. Messersmith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catron, N.D., Lee, H. & Messersmith, P.B. Enhancement of poly (ethylene glycol) mucoadsorption by biomimetic end group functionalization. Biointerphases 1, 134–141 (2006). https://doi.org/10.1116/1.2422894

Download citation