Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications

Article metrics

Abstract

A simple dipping process has been used to prepare PEGylated surface gradients from the polycationic polymer poly(l-lysine), grafted with poly(ethylene glycol) (PLL-g-PEG), on metal oxide substrates, such as TiO2 and Nb2O5. PLL-g-PEG coverage gradients were prepared during an initial, controlled immersion and characterized with variable angle spectroscopic ellipsometry and x-ray photoelectron spectroscopy. Gradients with a linear change in thickness and coverage were generated by the use of an immersion program based on an exponential function. These single-component gradients were used to study the adsorption of proteins of different sizes and shapes, namely, albumin, immunoglobulin G, and fibrinogen. The authors have shown that the density and size of defects in the PLL-g-PEG adlayer determine the amount of protein that is adsorbed at a certain adlayer thickness. In a second step, single-component gradients of functionalized PLL-g-PEG were backfilled with nonfunctionalized PLL-g-PEG to generate two-component gradients containing functional groups, such as biotin, in a protein-resistant background. Such gradients were combined with a patterning technique to generate individually addressable spots on a gradient surface. The surfaces generated in this way show promise as a useful and versatile biochemical screening tool and could readily be incorporated into a method for studying the behavior of cells on functionalized surfaces.

References

  1. 1

    W. Senaratne, L. Andruzzi, and C. K. Ober, Biomacromolecules 6, 2427 (2005).

  2. 2

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

  3. 3

    M. Tirrell, E. Kokkoli, and M. Biesalski, Surf. Sci. 500, 61 (2002).

  4. 4

    B. Kasemo, Surf. Sci. 500, 656 (2002).

  5. 5

    P. Vermette and L. Meagher, Colloids Surf., B 28, 153 (2003).

  6. 6

    J. M. Harris, Poly(ethylene glycol) Chemistry and Biological Applications (American Chemical Society, Washington, DC, 1997), Vol. 680.

  7. 7

    C. Palegrosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

  8. 8

    Y. Y. Luk, M. Kato, and M. Mrksich, Langmuir 16, 9604 (2000).

  9. 9

    S. F. Chen, L. Y. Liu, and S. Y. Jiang, Langmuir 22, 2418 (2006).

  10. 10

    K. Glasmastar, C. Larsson, F. Hook, and B. Kasemo, J. Colloid Interface Sci. 246, 40 (2002).

  11. 11

    M. Malmsten, J. Colloid Interface Sci. 168, 247 (1994).

  12. 12

    E. Osterberg, K. Bergstrom, K. Holmberg, J. A. Riggs, J. M. Van Alstine, T. P. Schuman, N. L. Burns, and J. M. Harris, Colloids Surf., A 77, 159 (1993).

  13. 13

    R. E. Marchant, S. Yuan, and G. Szakalasgratzl, J. Biomater. Sci., Polym. Ed. 6, 549 (1994).

  14. 14

    S. L. McArthur, K. M. McLean, P. Kingshott, H. A. W. St. John, R. C. Chatelier, and H. J. Griesser, Colloids Surf., B 17, 37 (2000).

  15. 15

    R. A. Frazier, G. Matthijs, M. C. Davies, C. J. Roberts, E. Schacht, and S. J. B. Tendler, Biomaterials 21, 957 (2000).

  16. 16

    P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials 23, 2043 (2002).

  17. 17

    J. L. Dalsin, L. J. Lin, S. Tosatti, J. Voros, M. Textor, and P. B. Messersmith, Langmuir 21, 640 (2005).

  18. 18

    D. Lazos, S. Franzka, and M. Ulbricht, Langmuir 21, 8774 (2005).

  19. 19

    O. H. Kwon, Y. C. Nho, K. D. Park, and Y. H. Kim, J. Appl. Polym. Sci. 71, 631 (1999).

  20. 20

    H. W. Ma, J. H. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. (Weinheim, Ger.) 16, 338 (2004).

  21. 21

    R. J. Green, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, J. Biomed. Mater. Res. 42, 165 (1998).

  22. 22

    M. Amiji and K. Park, Biomaterials 13, 682 (1992).

  23. 23

    L. M. Feller, S. Cerritelli, M. Textor, J. A. Hubbell, and S. G. P. Tosatti, Macromolecules 38, 10503 (2005).

  24. 24

    G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 (2000).

  25. 25

    C. FreijLarsson, T. Nylander, P. Jannasch, and B. Wesslen, Biomaterials 17, 2199 (1996).

  26. 26

    J. P. Bearinger, D. G. Castner, S. L. Golledge, A. Rezania, S. Hubchak, and K. E. Healy, Langmuir 13, 5175 (1997).

  27. 27

    T. A. Barber, S. L. Golledge, D. G. Castner, and K. E. Healy, J. Biomed. Mater. Res. Part A 64, 38 (2003).

  28. 28

    E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

  29. 29

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

  30. 30

    M. Mrksich, G. B. Sigal, and G. M. Whitesides, Langmuir 11, 4383 (1995).

  31. 31

    K. Feldman, G. Hahner, N. D. Spencer, P. Harder, and M. Grunze, J. Am. Chem. Soc. 121, 10134 (1999).

  32. 32

    S. W. Lee and P. E. Laibinis, Biomaterials 19, 1669 (1998).

  33. 33

    N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, Biomaterials 25, 2721 (2004).

  34. 34

    S. Pasche, S. M. De Paul, J. Voros, N. D. Spencer, and M. Textor, Langmuir 19, 9216 (2003).

  35. 35

    N. P. Huang et al., Langmuir 17, 489 (2001).

  36. 36

    R. Michel, S. Pasche, M. Textor, and D. G. Castner, Langmuir 21, 12327 (2005).

  37. 37

    M. S. Wagner, S. Pasche, D. G. Castner, and M. Textor, Anal. Chem. 76, 1483 (2004).

  38. 38

    N. P. Huang, J. Voros, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).

  39. 39

    G. L. Zhen, D. Falconnet, E. Kuennemann, J. Voros, N. D. Spencer, M. Textor, and S. Zurcher, Adv. Funct. Mater. 16, 243 (2006).

  40. 40

    S. VandeVondele, J. Voros, and J. A. Hubbell, Biotechnol. Bioeng. 82, 784 (2003).

  41. 41

    S. Tosatti, S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall, and M. Textor, Biomaterials 24, 4949 (2003).

  42. 42

    M. Schuler, G. R. Owen, D. W. Hamilton, M. De Wilde, M. Textor, D. M. Brunette, and S. G. P. Tosatti, Biomaterials 27, 4003 (2006).

  43. 43

    J. Dodd and T. M. Jessell, Science 242, 692 (1988).

  44. 44

    J. H. Lee, B. J. Jeong, and H. B. Lee, J. Biomed. Mater. Res. 34, 105 (1997).

  45. 45

    Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials 20, 2185 (1999).

  46. 46

    T. Wu, K. Efimenko, and J. Genzer, J. Am. Chem. Soc. 124, 9394 (2002).

  47. 47

    B. Zhao, Langmuir 20, 11748 (2004).

  48. 48

    Y. Mei et al., Langmuir 21, 12309 (2005).

  49. 49

    Y. Liu, V. Klep, B. Zdyrko, and I. Luzinov, Langmuir 21, 11806 (2005).

  50. 50

    M. R. Tomlinson and J. Genzer, Macromolecules 36, 3449 (2003).

  51. 51

    C. Xu, T. Wu, C. M. Drain, J. D. Batteas, and K. L. Beers, Macromolecules 38, 6 (2005).

  52. 52

    L. Ionov, B. Zdyrko, A. Sidorenko, S. Minko, V. Klep, I. Luzinov, and M. Stamm, Macromol. Rapid Commun. 25, 360 (2004).

  53. 53

    K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, and A. C. Hillier, Langmuir 21, 4809 (2005).

  54. 54

    Y.-S. Lin and V. Hlady, Colloids Surf., B 2, 481 (1994).

  55. 55

    S. K. W. Dertinger, X. Y. Jiang, Z. Y. Li, V. N. Murthy, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 99, 12542 (2002).

  56. 56

    I. Caelen, A. Bernard, D. Juncker, B. Michel, H. Heinzelmann, and E. Delamarche, Langmuir 16, 9125 (2000).

  57. 57

    K. A. Fosser and R. G. Nuzzo, Anal. Chem. 75, 5775 (2003).

  58. 58

    S. T. Plummer, Q. Wang, P. W. Bohn, R. Stockton, and M. A. Schwartz, Langmuir 19, 7528 (2003).

  59. 59

    J. T. Smith, J. K. Tomfohr, M. C. Wells, T. P. Beebe, T. B. Kepler, and W. M. Reichert, Langmuir 20, 8279 (2004).

  60. 60

    C. L. Hypolite, T. L. McLernon, D. N. Adams, K. E. Chapman, C. B. Herbert, C. C. Huang, M. D. Distefano, and W. S. Hu, Bioconjugate Chem. 8, 658 (1997).

  61. 61

    R. A. Venkateswar, D. W. Branch, and B. C. Wheeler, Biomed. Microdevices 2, 255 (2000).

  62. 62

    A. Y. Sankhe, B. D. Booth, N. J. Wiker, and S. M. Kilbey, Langmuir 21, 5332 (2005).

  63. 63

    L. Pardo, W. C. Wilson, and T. J. Boland, Langmuir 19, 1462 (2003).

  64. 64

    H. Baier and F. Bonhoeffer, Science 255, 472 (1992).

  65. 65

    S. Kramer, H. Xie, J. Gaff, J. R. Williamson, A. G. Tkachenko, N. Nouri, D. A. Feldheim, and D. L. Feldheim, J. Am. Chem. Soc. 126, 5388 (2004).

  66. 66

    S. Morgenthaler, S. Lee, S. Zürcher, and N. D. Spencer, Langmuir 19, 10459 (2003).

  67. 67

    P. Tengvall, in Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Response and Medical Applications, edited by D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen (Springer, Heidelberg, 2000).

  68. 68

    D. Falconnet, A. Koenig, T. Assi, and M. Textor, Adv. Funct. Mater. 14, 749 (2004).

  69. 69

    J. A. Defeijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

Download references

Author information

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and Permissions

About this article