Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications

Abstract

A simple dipping process has been used to prepare PEGylated surface gradients from the polycationic polymer poly(l-lysine), grafted with poly(ethylene glycol) (PLL-g-PEG), on metal oxide substrates, such as TiO2 and Nb2O5. PLL-g-PEG coverage gradients were prepared during an initial, controlled immersion and characterized with variable angle spectroscopic ellipsometry and x-ray photoelectron spectroscopy. Gradients with a linear change in thickness and coverage were generated by the use of an immersion program based on an exponential function. These single-component gradients were used to study the adsorption of proteins of different sizes and shapes, namely, albumin, immunoglobulin G, and fibrinogen. The authors have shown that the density and size of defects in the PLL-g-PEG adlayer determine the amount of protein that is adsorbed at a certain adlayer thickness. In a second step, single-component gradients of functionalized PLL-g-PEG were backfilled with nonfunctionalized PLL-g-PEG to generate two-component gradients containing functional groups, such as biotin, in a protein-resistant background. Such gradients were combined with a patterning technique to generate individually addressable spots on a gradient surface. The surfaces generated in this way show promise as a useful and versatile biochemical screening tool and could readily be incorporated into a method for studying the behavior of cells on functionalized surfaces.

References

  1. 1

    W. Senaratne, L. Andruzzi, and C. K. Ober, Biomacromolecules 6, 2427 (2005).

    Article  CAS  Google Scholar 

  2. 2

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

    Article  CAS  Google Scholar 

  3. 3

    M. Tirrell, E. Kokkoli, and M. Biesalski, Surf. Sci. 500, 61 (2002).

    Article  CAS  Google Scholar 

  4. 4

    B. Kasemo, Surf. Sci. 500, 656 (2002).

    Article  CAS  Google Scholar 

  5. 5

    P. Vermette and L. Meagher, Colloids Surf., B 28, 153 (2003).

    Article  CAS  Google Scholar 

  6. 6

    J. M. Harris, Poly(ethylene glycol) Chemistry and Biological Applications (American Chemical Society, Washington, DC, 1997), Vol. 680.

    Google Scholar 

  7. 7

    C. Palegrosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).

    Article  CAS  Google Scholar 

  8. 8

    Y. Y. Luk, M. Kato, and M. Mrksich, Langmuir 16, 9604 (2000).

    Article  CAS  Google Scholar 

  9. 9

    S. F. Chen, L. Y. Liu, and S. Y. Jiang, Langmuir 22, 2418 (2006).

    Article  CAS  Google Scholar 

  10. 10

    K. Glasmastar, C. Larsson, F. Hook, and B. Kasemo, J. Colloid Interface Sci. 246, 40 (2002).

    Article  Google Scholar 

  11. 11

    M. Malmsten, J. Colloid Interface Sci. 168, 247 (1994).

    Article  CAS  Google Scholar 

  12. 12

    E. Osterberg, K. Bergstrom, K. Holmberg, J. A. Riggs, J. M. Van Alstine, T. P. Schuman, N. L. Burns, and J. M. Harris, Colloids Surf., A 77, 159 (1993).

    Article  Google Scholar 

  13. 13

    R. E. Marchant, S. Yuan, and G. Szakalasgratzl, J. Biomater. Sci., Polym. Ed. 6, 549 (1994).

    Article  CAS  Google Scholar 

  14. 14

    S. L. McArthur, K. M. McLean, P. Kingshott, H. A. W. St. John, R. C. Chatelier, and H. J. Griesser, Colloids Surf., B 17, 37 (2000).

    Article  CAS  Google Scholar 

  15. 15

    R. A. Frazier, G. Matthijs, M. C. Davies, C. J. Roberts, E. Schacht, and S. J. B. Tendler, Biomaterials 21, 957 (2000).

    Article  CAS  Google Scholar 

  16. 16

    P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials 23, 2043 (2002).

    Article  CAS  Google Scholar 

  17. 17

    J. L. Dalsin, L. J. Lin, S. Tosatti, J. Voros, M. Textor, and P. B. Messersmith, Langmuir 21, 640 (2005).

    Article  CAS  Google Scholar 

  18. 18

    D. Lazos, S. Franzka, and M. Ulbricht, Langmuir 21, 8774 (2005).

    Article  CAS  Google Scholar 

  19. 19

    O. H. Kwon, Y. C. Nho, K. D. Park, and Y. H. Kim, J. Appl. Polym. Sci. 71, 631 (1999).

    Article  CAS  Google Scholar 

  20. 20

    H. W. Ma, J. H. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. (Weinheim, Ger.) 16, 338 (2004).

    Article  CAS  Google Scholar 

  21. 21

    R. J. Green, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, J. Biomed. Mater. Res. 42, 165 (1998).

    Article  CAS  Google Scholar 

  22. 22

    M. Amiji and K. Park, Biomaterials 13, 682 (1992).

    Article  CAS  Google Scholar 

  23. 23

    L. M. Feller, S. Cerritelli, M. Textor, J. A. Hubbell, and S. G. P. Tosatti, Macromolecules 38, 10503 (2005).

    Article  CAS  Google Scholar 

  24. 24

    G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 (2000).

    Article  CAS  Google Scholar 

  25. 25

    C. FreijLarsson, T. Nylander, P. Jannasch, and B. Wesslen, Biomaterials 17, 2199 (1996).

    Article  CAS  Google Scholar 

  26. 26

    J. P. Bearinger, D. G. Castner, S. L. Golledge, A. Rezania, S. Hubchak, and K. E. Healy, Langmuir 13, 5175 (1997).

    Article  CAS  Google Scholar 

  27. 27

    T. A. Barber, S. L. Golledge, D. G. Castner, and K. E. Healy, J. Biomed. Mater. Res. Part A 64, 38 (2003).

    Article  Google Scholar 

  28. 28

    E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).

    Article  CAS  Google Scholar 

  29. 29

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    Article  CAS  Google Scholar 

  30. 30

    M. Mrksich, G. B. Sigal, and G. M. Whitesides, Langmuir 11, 4383 (1995).

    Article  CAS  Google Scholar 

  31. 31

    K. Feldman, G. Hahner, N. D. Spencer, P. Harder, and M. Grunze, J. Am. Chem. Soc. 121, 10134 (1999).

    Article  CAS  Google Scholar 

  32. 32

    S. W. Lee and P. E. Laibinis, Biomaterials 19, 1669 (1998).

    Article  CAS  Google Scholar 

  33. 33

    N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, Biomaterials 25, 2721 (2004).

    Article  CAS  Google Scholar 

  34. 34

    S. Pasche, S. M. De Paul, J. Voros, N. D. Spencer, and M. Textor, Langmuir 19, 9216 (2003).

    Article  CAS  Google Scholar 

  35. 35

    N. P. Huang et al., Langmuir 17, 489 (2001).

    Article  CAS  Google Scholar 

  36. 36

    R. Michel, S. Pasche, M. Textor, and D. G. Castner, Langmuir 21, 12327 (2005).

    Article  CAS  Google Scholar 

  37. 37

    M. S. Wagner, S. Pasche, D. G. Castner, and M. Textor, Anal. Chem. 76, 1483 (2004).

    Article  CAS  Google Scholar 

  38. 38

    N. P. Huang, J. Voros, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).

    Article  CAS  Google Scholar 

  39. 39

    G. L. Zhen, D. Falconnet, E. Kuennemann, J. Voros, N. D. Spencer, M. Textor, and S. Zurcher, Adv. Funct. Mater. 16, 243 (2006).

    Article  CAS  Google Scholar 

  40. 40

    S. VandeVondele, J. Voros, and J. A. Hubbell, Biotechnol. Bioeng. 82, 784 (2003).

    Article  CAS  Google Scholar 

  41. 41

    S. Tosatti, S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall, and M. Textor, Biomaterials 24, 4949 (2003).

    Article  CAS  Google Scholar 

  42. 42

    M. Schuler, G. R. Owen, D. W. Hamilton, M. De Wilde, M. Textor, D. M. Brunette, and S. G. P. Tosatti, Biomaterials 27, 4003 (2006).

    Article  CAS  Google Scholar 

  43. 43

    J. Dodd and T. M. Jessell, Science 242, 692 (1988).

    Article  CAS  Google Scholar 

  44. 44

    J. H. Lee, B. J. Jeong, and H. B. Lee, J. Biomed. Mater. Res. 34, 105 (1997).

    Article  CAS  Google Scholar 

  45. 45

    Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials 20, 2185 (1999).

    Article  CAS  Google Scholar 

  46. 46

    T. Wu, K. Efimenko, and J. Genzer, J. Am. Chem. Soc. 124, 9394 (2002).

    Article  CAS  Google Scholar 

  47. 47

    B. Zhao, Langmuir 20, 11748 (2004).

    Article  CAS  Google Scholar 

  48. 48

    Y. Mei et al., Langmuir 21, 12309 (2005).

    Article  CAS  Google Scholar 

  49. 49

    Y. Liu, V. Klep, B. Zdyrko, and I. Luzinov, Langmuir 21, 11806 (2005).

    Article  CAS  Google Scholar 

  50. 50

    M. R. Tomlinson and J. Genzer, Macromolecules 36, 3449 (2003).

    Article  CAS  Google Scholar 

  51. 51

    C. Xu, T. Wu, C. M. Drain, J. D. Batteas, and K. L. Beers, Macromolecules 38, 6 (2005).

    Article  CAS  Google Scholar 

  52. 52

    L. Ionov, B. Zdyrko, A. Sidorenko, S. Minko, V. Klep, I. Luzinov, and M. Stamm, Macromol. Rapid Commun. 25, 360 (2004).

    Article  CAS  Google Scholar 

  53. 53

    K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, and A. C. Hillier, Langmuir 21, 4809 (2005).

    Article  CAS  Google Scholar 

  54. 54

    Y.-S. Lin and V. Hlady, Colloids Surf., B 2, 481 (1994).

    Article  CAS  Google Scholar 

  55. 55

    S. K. W. Dertinger, X. Y. Jiang, Z. Y. Li, V. N. Murthy, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 99, 12542 (2002).

    Article  CAS  Google Scholar 

  56. 56

    I. Caelen, A. Bernard, D. Juncker, B. Michel, H. Heinzelmann, and E. Delamarche, Langmuir 16, 9125 (2000).

    Article  CAS  Google Scholar 

  57. 57

    K. A. Fosser and R. G. Nuzzo, Anal. Chem. 75, 5775 (2003).

    Article  CAS  Google Scholar 

  58. 58

    S. T. Plummer, Q. Wang, P. W. Bohn, R. Stockton, and M. A. Schwartz, Langmuir 19, 7528 (2003).

    Article  CAS  Google Scholar 

  59. 59

    J. T. Smith, J. K. Tomfohr, M. C. Wells, T. P. Beebe, T. B. Kepler, and W. M. Reichert, Langmuir 20, 8279 (2004).

    Article  CAS  Google Scholar 

  60. 60

    C. L. Hypolite, T. L. McLernon, D. N. Adams, K. E. Chapman, C. B. Herbert, C. C. Huang, M. D. Distefano, and W. S. Hu, Bioconjugate Chem. 8, 658 (1997).

    Article  CAS  Google Scholar 

  61. 61

    R. A. Venkateswar, D. W. Branch, and B. C. Wheeler, Biomed. Microdevices 2, 255 (2000).

    Article  CAS  Google Scholar 

  62. 62

    A. Y. Sankhe, B. D. Booth, N. J. Wiker, and S. M. Kilbey, Langmuir 21, 5332 (2005).

    Article  CAS  Google Scholar 

  63. 63

    L. Pardo, W. C. Wilson, and T. J. Boland, Langmuir 19, 1462 (2003).

    Article  CAS  Google Scholar 

  64. 64

    H. Baier and F. Bonhoeffer, Science 255, 472 (1992).

    Article  CAS  Google Scholar 

  65. 65

    S. Kramer, H. Xie, J. Gaff, J. R. Williamson, A. G. Tkachenko, N. Nouri, D. A. Feldheim, and D. L. Feldheim, J. Am. Chem. Soc. 126, 5388 (2004).

    Article  Google Scholar 

  66. 66

    S. Morgenthaler, S. Lee, S. Zürcher, and N. D. Spencer, Langmuir 19, 10459 (2003).

    Article  CAS  Google Scholar 

  67. 67

    P. Tengvall, in Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Response and Medical Applications, edited by D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen (Springer, Heidelberg, 2000).

    Google Scholar 

  68. 68

    D. Falconnet, A. Koenig, T. Assi, and M. Textor, Adv. Funct. Mater. 14, 749 (2004).

    Article  CAS  Google Scholar 

  69. 69

    J. A. Defeijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgenthaler, S., Zink, C., Städler, B. et al. Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications. Biointerphases 1, 156–165 (2006). https://doi.org/10.1116/1.2431704

Download citation