Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Benzamidine-based coatings: Implication of inhibitor structure on the inhibition of coagulation enzymes in solution and in vitro hemocompatibility assessment

Article metrics

  • 393 Accesses

  • 6 Citations

Abstract

Synthetic inhibitors of trypsin-like serine proteases were covalently immobilized to polymeric materials to passivate coagulation enzymes during blood contact. The inhibitory potency of a structurally simple and larger, more complex amidine derivatives was assessed against thrombin and factor Xa. After adsorption of serum albumin, the polymer films decorated with either one of the inhibitors were found to scavenge thrombin—with a higher affinity in the case of the larger inhibitor—but not factor Xa. Both inhibitor-containing coatings showed a significantly reduced thrombogenicity, coagulation activation, as well as complement activation when incubated with freshly drawn human whole blood in vitro. The authors conclude that the introduced principle offers a promising approach for hemocompatible materials for short term applications. Even rather simple inhibitors can be successfully employed for that purpose.

References

  1. 1

    S. Hanson and B. D. Ratner, Biomaterials Science, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons (Academic, San Diego, 1996), pp. 228–238.

  2. 2

    R. C. Eberhart and C. P. Clagett, Semin Hematol. 28, 42 (1991).

  3. 3

    G. P. Clagett and R. C. Eberhart, in Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd. ed., edited by R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman (Lippincott, Philadelphia, PA, 1994), pp. 1486–1505.

  4. 4

    J. A. Bittl, J. Am. Coll. Cardiol. 28, 368 (1996).

  5. 5

    N. Weber, H. P. Wendel, and G. Ziemer, Biomaterials 23, 429 (2002).

  6. 6

    R. M. Cornelius, J. Sanchez, P. Olsson, and J. L. Brash, J. Biomed. Mater. Res. 67A, 475 (2003).

  7. 7

    R. de Vroege et al., Anesth. Analg. (Baltimore) 98, 1586 (2004).

  8. 8

    Y. B. Aldenhoff, M. L. Knetsch, J. H. Hanssen, T. Lindhout, S. J. Wielders, and L. H. Koole, Biomaterials 25, 3125 (2004).

  9. 9

    C. Sperling, K. Salchert, U. Streller, and C. Werner, Biomaterials 25, 5101S (2004).

  10. 10

    M. C. Wyers, M. D. Phaneuf, E. M. Rzucidlo, M. A. Contreras, F. W. LoGerfo, and W. C. Quist, Cardiovasc. Pathol. 8, 153 (1999).

  11. 11

    D. D. Kirn, M. M. Takeno, B. D. Ratner, and T. A. Horbett, Pharm. Res. 15, 783 (1998).

  12. 12

    T. Richey, H. Iwata, H. Oowaki, E. Uchida, S. Matsuda, and Y. Ikada, Biomaterials 21, 1057 (2000).

  13. 13

    G. A. Abraham, A. A. A. de Queiroz, and J. San Román, Biomaterials 23, 1625 (2002).

  14. 14

    Y. B. J. Aldenhoff, F. H. van der Veen, J. ter Woorst, J. Habets, L. A. Poole-Warren, and L. H. Koole, J. Biomed. Mater. Res. 54, 224 (2001).

  15. 15

    Y. Ito, L. S. Liu, R. Matsuo, and Y. Imanishi, J. Biomed. Mater. Res. 26, 1065 (1992).

  16. 16

    X. Sun, H. Sheardown, P. Tengwall, and J. L. Brash, J. Biomed. Mater. Res. 49, 66 (2000).

  17. 17

    P. Kingshott and H. J. Griesser, Curr. Opin. Solid State Mater. Sci. 4, 403 (1999).

  18. 18

    W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, J. Biomed. Mater. Res. 25, 1547 (1991).

  19. 19

    J. H. Lee, H. B. Lee, and J. D. Andrade, Prog. Polym. Sci. 20, 1043 (1995).

  20. 20

    Y. Iwasaki and K. Ishihara, Anal. Bioanal. Chem. 381, 534 (2005).

  21. 21

    W. Feng, S. Zhu, K. Ishihara, and J. L. Brasha, BioInterphases 1, 50 (2006).

  22. 22

    J. M. Andrews, D. P. Roman, and D. H. Bing, J. Med. Chem. 21, 1202 (1978).

  23. 23

    M.-F. Gouzy et al., Biomaterials 25, 3493 (2004).

  24. 24

    T. Steinmetzer, A. Schweinitz, S. Künzel, P. Wikstroem, J. Hauptmann, and J. Stuerzebecher, J. Enzyme Inhib. 16, 241 (2001).

  25. 25

    J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).

  26. 26

    Spartan’o2, Wavefunction, Inc., 2001.

  27. 27

    E. Di Cera, Q. D. Dang, and Y. M. Ayala, Cell. Mol. Life Sci. 53, 701 (1997).

  28. 28

    A. M. Lesk and W. D. Fordham, J. Mol. Biol. 258, 501 (1996).

  29. 29

    G. De Simone et al., J. Mol. Biol. 269, 558 (1997).

  30. 30

    T. Pompe, S. Zschoche, N. Herold, K. Salchert, M.-F. Gouzy, C. Sperling, and C. Werner, Biomacromolecules 4, 1072 (2003).

  31. 31

    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1987), pp. 417–428.

  32. 32

    J. A. Woollam, User Manual VASE and M-44 Ellipsometers, WVASE 32TM (J. A. Woollam, Lincoln, NE).

  33. 33

    C. Werner, K. J. Eichhorn, K. Grundke, F. Simon, W. Grählert, and H. J. Jacobasch, Colloids Surf., A 156, 3S (1999).

  34. 34

    M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).

  35. 35

    D. A. Cole et al., J. Vac. Sci. Technol. B 18, 440 (2000).

  36. 36

    K. Salchert, T. Pompe, C. Sperling, and C. Werner, J. Chromatogr. A 1005, 113 (2003).

  37. 37

    U. Streller, C. Sperling, J. Huebner, R. Hanke, and C. Werner, J. Biomed. Mater. Res., Part B: Appl. Biomater. 66B, 379 (2003).

  38. 38

    G. Hafelinger, in The Chemistry of Amidines and Imidates, edited by S. Patai (Wiley, New York, 1975), pp. 1–84.

  39. 39

    J. Stuerzebecher, H. Vieweg, P. Wikstroem, D. Turk, and W. Bode, Biol. Chem. 473, 491 (1992).

  40. 40

    D. W. Banner and P. Hadvary, J. Biol. Chem. 266, 20085 (1991).

  41. 41

    H. Brandstetter, D. Turk, H. W. Hoeffken, D. Grosse, J. Stürzebecher, P.D. Martin, B. F. P. Edwards, and W. Bode, J. Mol. Biol. 226, 1085 (1992).

  42. 42

    The numbering of amino acids of thrombin refers to chymotrypsin. Insertions relative to chymotrypsin are denoted by a letter:W. Bode, I. Mayr, U. Baumann, R. Huber, S. R. Stone, and J. Hofsteenge, EMBO J. 8, 3467 (1989).

  43. 43

    R. Rai, P. A. Sprengeler, K. C. Elrod, and W. B. Young, Curr. Med. Chem. 8, 101 (2001).

  44. 44

    T. Pompe, L. Renner, M. Grimmer, N. Herold, and C. Werner, Macromol. Biosci. 5, 890 (2005).

  45. 45

    U. Schmidt, S. Zschoche, and C. Werner, J. Appl. Polym. Sci. 87, 1255 (2003).

  46. 46

    S. A. Sukhishvili and S. Granick, J. Chem. Phys. 110, 10153 (1999).

  47. 47

    C. G. Beddows, M. H. Gil, and T. Guthrie, Biotechnol. Bioeng. 28, 51 (1986).

  48. 48

    C. Ladaviere, T. Delair, A. Dormard, A. Novelli-Rousseau, B. Mandrand, and F. Mallet, Bioconjugate Chem. 9, 655 (1998).

  49. 49

    K. Salchert, U. Streller, T. Pompe, N. Herold, M. Grimmer, and C. Werner, Biomacromolecules 5, 1340 (2004).

  50. 50

    G. Tans, J. Rosing, and J. H. Griffin, J. Biol. Chem. 258, 8215 (1983).

  51. 51

    R. M. Hakim, Cardiovasc. Pathol. 2, 187S (1993).

  52. 52

    S. S. Asghar, K. W. Pondman, and R. H. Cormane, Biochim. Biophys. Acta 317, 539 (1973).

  53. 53

    R. J. Johnson, in Biomaterials Science, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons (Academic, San Diego, 1996), pp. 173–187.

  54. 54

    C. H. Gemmell, J. Biomater. Sci., Polym. Ed. 11, 1197 (2000).

  55. 55

    M. B. Gorbet and M. V. Sefton, Biomaterials 25, 5681 (2004).

Download references

Author information

Correspondence to Carsten Werner.

Rights and permissions

Reprints and Permissions

About this article