Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation
Biointerphases volume 2, pages 6–15 (2007)
Abstract
The authors present in this paper how the extended Mie theory can be used to translate not only end-point data but also temporal variations of extinction peak-position changes, δλpeak(t), into absolute mass uptake, Γ(t), upon biomacromolecule binding to localized surface plasmon resonance (SPR) active nanoparticles (NPs). The theoretical analysis is applied on a novel sensor template composed of a three-layer surface architecture based on (i) a self-assembled monolayer of HS(CH2)15COOH, (ii) a 1:1 mixture of biotinylated and pure poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), and (iii) NeutrAvidin. Assisted by independent estimations of the thickness of the three-layer architecture using quartz crystal microbalance with dissipation (QCM-D) monitoring, excellent agreement with parallel mass-uptake estimations using planar SPR is obtained. Furthermore, unspecific binding of serum to PLL-g-PEG was shown to be below the detection limit, making the surface architecture ideally suited for label-free detection of immunoreactions. To ensure that the immunocomplex formation occurred within the limited sensing depth (∼10 nm) of the NPs, a compact model system composed of a biotinylated human recombinant single-chain antibody fragment (∅∼2 nm) directed against cholera toxin was selected. By tracking changes in the centroid (center of mass) of the extinction peak, rather than the actual peak position, signal-to-noise levels and long-term stability upon cholera toxin detection are demonstrated to be competitive with results obtained using conventional SPR and state-of-the-art QCM-D data.
References
N. Ramachandran, D. N. Larson, P. R. H. Stark, E. Hainsworth, and J. LaBaer, FEBS J. 272, 5412 2005.
E. Hutter and J. H. Fendler, Adv. Mater. Weinheim, Ger. 16, 1685 2004.
A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920 2004.
P. Englebienne, Analyst Cambridge, U.K. 123, 1599 1998.
G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, Nano Lett. 3, 935 2003.
A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 2003.
N. N. Kariuki et al., Langmuir 20, 11240 2004.
H. E. Ruda and A. Shik, Phys. Rev. B 71, 245328 2005.
N. Nath and A. Chilkoti, Anal. Chem. 76, 5370 2004.
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 2003.
I. O. Sosa, C. Noguez, and R. G. Barrera, J. Phys. Chem. B 107, 6269 2003.
W. Rechberger, H. A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 2003.
A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 2004.
B. Liedberg, I. Lundström, and E. Stenberg, Sens. Actuators B 11, 63 1993.
W. Hickel and M. Knoll, J. Appl. Phys. 67, 3572 1990.
B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 71, 3928 1999.
E. Stenberg, B. Persson, H. Ross, and C. Urbaniczky, J. Colloid Interface Sci. 143, 513 1991.
L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 1998.
G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, J. Am. Chem. Soc. 123, 3177 2001.
G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, Chem.-Eur. J. 8, 3850 2002.
M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc. 123, 1471 2001.
A. J. Haes and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 2002.
J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. Van Duyne, J. Phys. Chem. B 107, 1772 2003.
H. Kitano, Y. Anraku, and H. Shinohara, Biomacromolecules 7, 1065 2006.
E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 2004.
H. X. Xu and M. Käll, Sens. Actuators B 87, 244 2002.
L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Käll, and F. Höök, Langmuir 19, 10414 2003.
T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 103, 2394 1999.
T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 103, 9846 1999.
J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 1978.
C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc. 126, 12669 2004.
I. Doron-Mor, H. Cohen, Z. Barkay, A. Shanzer, A. Vaskevich, and I. Rubinstein, Chem.-Eur. J. 11, 5555 2005.
A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 2004.
S. Pasche, S. M. De Paul, J. Vörös, N. D. Spencer, and M. Textor, Langmuir 19, 9216 2003.
G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 2000.
N. P. Hung, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 2002.
L. Strong and G. M. Whitesides, Langmuir 4, 546 1988.
F. Xu, G. Zhen, M. Textor, and W. Knoll, BioInterphases 1, 73 2006.
K. Johansen, I. Lundström, and B. Liedberg, Biosens. Bioelectron. 15, 503 2000.
A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 2005.
F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 2001.
A. Zdanov, Y. Li, D. R. Bundle, S. J. Deng, R. Mackenzie, S. A. Narang, N. M. Young, and M. Cygler, Proc. Natl. Acad. Sci. U.S.A. 91, 6423 1994.
E. Söderlind et al., Nat. Biotechnol. 18, 852 2000.
C. Wingren, C. Steinhauer, J. Ingvarsson, E. Persson, K. Larsson, and C. A. K. Borrebaeck, Proteomics 5, 1281 2005.
F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, Langmuir 14, 729 1998.
H. X. Xu, Phys. Rev. B 72, 073405 2005.
A. Dahlin, J. O. Tegenfeldt, and F. Höök, Anal. Chem. 78, 4416 2006.
C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 1989.
D. D. Evanoff, Jr. and G. Chumanov, ChemPhysChem 6, 1221 2005.
M. Rodahl, F. Höök, and B. Kasemo, Anal. Chem. 68, 2219 1996.
F. Höök et al., Colloids Surf., B 24, 155 2002.
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 1972.
G. Stengel and W. Knoll, Nucleic Acids Res. 33, e69 2005.
S. J. Sofia, V. Premnath, and E. W. Merrill, Macromolecules 31, 5059 1998.
T. M. Davis and W. D. Wilson, Anal. Biochem. 284, 348 2000.
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 2002.
See EPAPS Document No. E-BJIOBN-2-002701 for a description of the slightly modified extended Mie theory. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage http://www.aip.org/pubservs/epaps.html.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, Y., Xu, H., Dahlin, A.B. et al. Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation. Biointerphases 2, 6–15 (2007). https://doi.org/10.1116/1.2700235
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1116/1.2700235