Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation

Abstract

The authors present in this paper how the extended Mie theory can be used to translate not only end-point data but also temporal variations of extinction peak-position changes, δλpeak(t), into absolute mass uptake, Γ(t), upon biomacromolecule binding to localized surface plasmon resonance (SPR) active nanoparticles (NPs). The theoretical analysis is applied on a novel sensor template composed of a three-layer surface architecture based on (i) a self-assembled monolayer of HS(CH2)15COOH, (ii) a 1:1 mixture of biotinylated and pure poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), and (iii) NeutrAvidin. Assisted by independent estimations of the thickness of the three-layer architecture using quartz crystal microbalance with dissipation (QCM-D) monitoring, excellent agreement with parallel mass-uptake estimations using planar SPR is obtained. Furthermore, unspecific binding of serum to PLL-g-PEG was shown to be below the detection limit, making the surface architecture ideally suited for label-free detection of immunoreactions. To ensure that the immunocomplex formation occurred within the limited sensing depth (10 nm) of the NPs, a compact model system composed of a biotinylated human recombinant single-chain antibody fragment (2 nm) directed against cholera toxin was selected. By tracking changes in the centroid (center of mass) of the extinction peak, rather than the actual peak position, signal-to-noise levels and long-term stability upon cholera toxin detection are demonstrated to be competitive with results obtained using conventional SPR and state-of-the-art QCM-D data.

References

  1. 1

    N. Ramachandran, D. N. Larson, P. R. H. Stark, E. Hainsworth, and J. LaBaer, FEBS J. 272, 5412 2005.

    Article  CAS  Google Scholar 

  2. 2

    E. Hutter and J. H. Fendler, Adv. Mater. Weinheim, Ger. 16, 1685 2004.

    Article  CAS  Google Scholar 

  3. 3

    A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920 2004.

    Article  CAS  Google Scholar 

  4. 4

    P. Englebienne, Analyst Cambridge, U.K. 123, 1599 1998.

    Article  CAS  Google Scholar 

  5. 5

    G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, Nano Lett. 3, 935 2003.

    Article  CAS  Google Scholar 

  6. 6

    A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 2003.

    Article  CAS  Google Scholar 

  7. 7

    N. N. Kariuki et al., Langmuir 20, 11240 2004.

    Article  CAS  Google Scholar 

  8. 8

    H. E. Ruda and A. Shik, Phys. Rev. B 71, 245328 2005.

    Article  Google Scholar 

  9. 9

    N. Nath and A. Chilkoti, Anal. Chem. 76, 5370 2004.

    Article  CAS  Google Scholar 

  10. 10

    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 2003.

    Article  CAS  Google Scholar 

  11. 11

    I. O. Sosa, C. Noguez, and R. G. Barrera, J. Phys. Chem. B 107, 6269 2003.

    Article  CAS  Google Scholar 

  12. 12

    W. Rechberger, H. A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 2003.

    Article  CAS  Google Scholar 

  13. 13

    A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 2004.

    Article  CAS  Google Scholar 

  14. 14

    B. Liedberg, I. Lundström, and E. Stenberg, Sens. Actuators B 11, 63 1993.

    Article  Google Scholar 

  15. 15

    W. Hickel and M. Knoll, J. Appl. Phys. 67, 3572 1990.

    Article  CAS  Google Scholar 

  16. 16

    B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 71, 3928 1999.

    Article  CAS  Google Scholar 

  17. 17

    E. Stenberg, B. Persson, H. Ross, and C. Urbaniczky, J. Colloid Interface Sci. 143, 513 1991.

    Article  CAS  Google Scholar 

  18. 18

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 1998.

    Article  CAS  Google Scholar 

  19. 19

    G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, J. Am. Chem. Soc. 123, 3177 2001.

    Article  CAS  Google Scholar 

  20. 20

    G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, Chem.-Eur. J. 8, 3850 2002.

    Article  Google Scholar 

  21. 21

    M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc. 123, 1471 2001.

    Article  CAS  Google Scholar 

  22. 22

    A. J. Haes and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 2002.

    Article  CAS  Google Scholar 

  23. 23

    J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. Van Duyne, J. Phys. Chem. B 107, 1772 2003.

    Article  CAS  Google Scholar 

  24. 24

    H. Kitano, Y. Anraku, and H. Shinohara, Biomacromolecules 7, 1065 2006.

    Article  CAS  Google Scholar 

  25. 25

    E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 2004.

    Article  CAS  Google Scholar 

  26. 26

    H. X. Xu and M. Käll, Sens. Actuators B 87, 244 2002.

    Article  Google Scholar 

  27. 27

    L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Käll, and F. Höök, Langmuir 19, 10414 2003.

    Article  CAS  Google Scholar 

  28. 28

    T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 103, 2394 1999.

    Article  CAS  Google Scholar 

  29. 29

    T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 103, 9846 1999.

    Article  CAS  Google Scholar 

  30. 30

    J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 1978.

    Article  Google Scholar 

  31. 31

    C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc. 126, 12669 2004.

    Article  CAS  Google Scholar 

  32. 32

    I. Doron-Mor, H. Cohen, Z. Barkay, A. Shanzer, A. Vaskevich, and I. Rubinstein, Chem.-Eur. J. 11, 5555 2005.

    Article  CAS  Google Scholar 

  33. 33

    A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 2004.

    Article  CAS  Google Scholar 

  34. 34

    S. Pasche, S. M. De Paul, J. Vörös, N. D. Spencer, and M. Textor, Langmuir 19, 9216 2003.

    Article  CAS  Google Scholar 

  35. 35

    G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 2000.

    Article  CAS  Google Scholar 

  36. 36

    N. P. Hung, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 2002.

    Article  Google Scholar 

  37. 37

    L. Strong and G. M. Whitesides, Langmuir 4, 546 1988.

    Article  CAS  Google Scholar 

  38. 38

    F. Xu, G. Zhen, M. Textor, and W. Knoll, BioInterphases 1, 73 2006.

    Article  CAS  Google Scholar 

  39. 39

    K. Johansen, I. Lundström, and B. Liedberg, Biosens. Bioelectron. 15, 503 2000.

    Article  CAS  Google Scholar 

  40. 40

    A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 2005.

    Article  CAS  Google Scholar 

  41. 41

    F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 2001.

    Article  Google Scholar 

  42. 42

    A. Zdanov, Y. Li, D. R. Bundle, S. J. Deng, R. Mackenzie, S. A. Narang, N. M. Young, and M. Cygler, Proc. Natl. Acad. Sci. U.S.A. 91, 6423 1994.

    Article  CAS  Google Scholar 

  43. 43

    E. Söderlind et al., Nat. Biotechnol. 18, 852 2000.

    Article  Google Scholar 

  44. 44

    C. Wingren, C. Steinhauer, J. Ingvarsson, E. Persson, K. Larsson, and C. A. K. Borrebaeck, Proteomics 5, 1281 2005.

    Article  CAS  Google Scholar 

  45. 45

    F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, Langmuir 14, 729 1998.

    Article  Google Scholar 

  46. 46

    H. X. Xu, Phys. Rev. B 72, 073405 2005.

    Article  Google Scholar 

  47. 47

    A. Dahlin, J. O. Tegenfeldt, and F. Höök, Anal. Chem. 78, 4416 2006.

    Article  CAS  Google Scholar 

  48. 48

    C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 1989.

    Article  CAS  Google Scholar 

  49. 49

    D. D. Evanoff, Jr. and G. Chumanov, ChemPhysChem 6, 1221 2005.

    Article  CAS  Google Scholar 

  50. 50

    M. Rodahl, F. Höök, and B. Kasemo, Anal. Chem. 68, 2219 1996.

    Article  CAS  Google Scholar 

  51. 51

    F. Höök et al., Colloids Surf., B 24, 155 2002.

    Article  Google Scholar 

  52. 52

    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 1972.

    Article  CAS  Google Scholar 

  53. 53

    G. Stengel and W. Knoll, Nucleic Acids Res. 33, e69 2005.

    Article  Google Scholar 

  54. 54

    S. J. Sofia, V. Premnath, and E. W. Merrill, Macromolecules 31, 5059 1998.

    Article  CAS  Google Scholar 

  55. 55

    T. M. Davis and W. D. Wilson, Anal. Biochem. 284, 348 2000.

    Article  CAS  Google Scholar 

  56. 56

    J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 2002.

    Article  Google Scholar 

  57. 57

    See EPAPS Document No. E-BJIOBN-2-002701 for a description of the slightly modified extended Mie theory. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage http://www.aip.org/pubservs/epaps.html.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fredrik Hööka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, Y., Xu, H., Dahlin, A.B. et al. Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation. Biointerphases 2, 6–15 (2007). https://doi.org/10.1116/1.2700235

Download citation