- Open access
- Published:
Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes
Biointerphases volume 2, pages 21–33 (2007)
Abstract
Surface-tethered biomimetic bilayer membranes (tethered bilayer lipid membranes (tBLMs)) were formed on gold surfaces from phospholipids and a synthetic 1-thiahexa(ethylene oxide) lipid, WC14. They were characterized using electrochemical impedance spectroscopy, neutron reflection (NR), and Fourier-transform infrared reflection-absorption spectroscopy (FT-IRRAS) to obtain functional and structural information. The authors found that electrically insulating membranes (conductance and capacitance as low as 1 μS cm−2 and 0.6 μF cm−2, respectively) with high surface coverage (>95% completion of the outer leaflet) can be formed from a range of lipids in a simple two-step process that consists of the formation of a self-assembled monolayer (SAM) and bilayer completion by “rapid solvent exchange.” NR provided a molecularly resolved characterization of the interface architecture and, in particular, the constitution of the space between the tBLM and the solid support. In tBLMs based on SAMs of pure WC14, the hexa(ethylene oxide) tether region had low hydration even though FT-IRRAS showed that this region is structurally disordered. However, on mixed SAMs made from the coadsorption of WC14 with a short-chain “backfiller,” ß-mercaptoethanol, the submembrane spaces between the tBLM and the substrates contained up to 60% exchangeable solvent by volume, as judged from NR and contrast variation of the solvent. Complete and stable “sparsely tethered” BLMs (stBLMs) can be readily prepared from SAMs chemisorbed from solutions with low WC14 proportions. Phospholipids with unsaturated or saturated, straight or branched chains all formed qualitatively similar stBLMs.
References
M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).
C. Erdelen et al., Langmuir 10, 1246 (1994).
E. Sackmann, Science 271, 43 (1996).
C. A. Naumann, O. Prucker, T. Lehmann, J. Rühe, W. Knoll, and C. W. Frank, Biomacromolecules 3, 27 (2002).
B. A. Cornell, V. L. B. Braach-Maksvytis, L. B. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997).
C. W. Meuse, S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant, Biophys. J. 74, 1388 (1998).
Y. L. Cheng, N. Boden, R. J. Bushby, S. Clarkson, S. D. Evans, P. F. Knowles, A. Marsh, and R. E. Miles, Langmuir 14, 839 (1998).
M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).
R. Naumann et al., Langmuir 19, 5435 (2003).
S. Terrettaz, M. Mayer, and H. Vogel, Langmuir 19, 5567 (2003).
C. Rossi, J. Homand, C. Bauche, H. Hamdi, D. Ladant, and J. Chopineau, Biochemistry 42, 15273 (2003).
F. Albertorio, A. J. Diaz, T. Yang, V. A. Chapa, S. Kataoka, E. T. Castellana, and P. S. Cremer, Langmuir 21, 7476 (2005).
L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).
M. Tanaka, MRS Bull. 31, 513 (2006).
L. Zhang and S. Granick, MRS Bull. 31, 527 (2006).
C. Hamai, T. Yang, S. Kataoka, P. S. Cremer, and S. M. Musser, Biophys. J. 90, 1241 (2006).
V. Kiessling, J. M. Crane, and L. K. Tamm, Biophys. J. 91, 3313 (2006).
Y. Fang, Y. Hong, B. Webb, and J. Lahiri, MRS Bull. 31, 541 (2006).
S. Daniel, F. Albertorio, and P. S. Cremer, MRS Bull. 31, 536 (2006).
I. Burgess, M. Li, S. L. Horswell, G. Szymanski, J. Lipkowski, J. Majewski, and S. Satija, Biophys. J. 86, 1763 (2004).
B. W. Koenig, S. Krueger, W. J. Orts, C. F. Majkrzak, N. F. Berk, J. V. Silverton, and K. Gawrisch, Langmuir 12, 1343 (1996).
G. Krishna, J. Schulte, B. A. Cornell, R. Pace, L. Wieczorek, and P. D. Osman, Langmuir 17, 4858 (2001).
G. Krishna, J. Schulte, B. A. Cornell, R. J. Pace, and P. D. Osman, Langmuir 19, 2294 (2003).
B. Raguse, V. L. B. Braach-Maksvytis, B. A. Cornell, L. B. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).
D. J. Vanderah, R. S. Gates, V. Silin, D. N. Zeiger, J. T. Woodward, C. W. Meuse, G. Valincius, and B. Nickel, Langmuir 19, 2612 (2003).
S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).
D. J. McGillivray, G. Valincius, F. Heinrich, J. W. F. Robertson, D. J. Vanderah, W. Febo-Ayala, I. Ignatjev, M. Lösche, and J. J. Kasianowicz (submitted).
Certain commercial materials, equipment, and instruments are identified in this paper in order to specify the experimental procedure as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials, equipment, or instruments identified are necessarily the best available for the purpose.
See EPAPS Document No. E-BJIOBN-2-001701 for a complete description of the synthesis and characterization of 20-tetradecyloxy-3 6, 9, 12, 15, 18, 22-heptaoxahexatricontane-1-thiol (WC14). This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
D. J. Vanderah, C. W. Meuse, V. Silin, and A. L. Plant, Langmuir 14, 6916 (1998).
I. D. Raistrick, D. R. Franceschetti, and J. R. Macdonald, in Impedance Spectroscopy: Theory, Experiment, and Applications, edited by E. Barsoukov and J. R. Macdonald (Wiley, New York, 2005), p. 27.
R. K. Burstein, Elektrokhimiya 3, 349 (1967).
J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002).
J. A. Dura et al., Rev. Sci. Instrum. 77, 074301 (2006).
P. A. Kienzle, M. Doucet, D. J. McGillivray, K. V. O’Donovan, N. F. Berk, and C. F. Majkrzak (2000–2006), http://www.ncnr.nist.gov/reflpak
L. G. Parratt, Phys. Rev. 95, 359 (1954).
www.ncnr.nist.gov/resources/n-lengths/list.html
D. A. Doshi, E. B. Watkins, J. N. Israelachvili, and J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).
D. A. Lowy and H. O. Finklea, Electrochim. Acta 42, 1325 (1997).
C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).
The contribution of the Helmholtz layer is estimated as C ′ SAM=(C −1 SAM +C −1 H −1, where C ′ SAM is the corrected SAM capacitance and C H ≈10 (μF cm−2. We estimate the relative uncertainty, due to uncertainty in C H , ΔC′/SAM≈10%.
M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).
M. A. K. Dissanayake and R. Frech, Macromolecules 28, 5312 (1995).
D. J. Vanderah, J. Arsenault, H. La, R. S. Gates, V. Silin, C. W. Meuse, and G. Valincius, Langmuir 19, 3752 (2003).
V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys. 71, 779 (1999).
A more complete rationalization of this model will be given elsewhere #G. Valincius and F. Ivanauskas (unpublished)].
R. De Levie, Electrochim. Acta 8, 751 (1963).
H. Keiser, K. D. Beccu, and M. A. Gutjahr, Electrochim. Acta 21, 539 (1976).
T. Charitat, E. Bellet-Amalric, G. Fragneto, and F. Graner, Eur. Phys. J. B 8, 583 (1999).
C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc. 110, 3665 (1988).
D. Needham and E. Evans, Biochemistry 27, 8261 (1988).
S. J. Singer and G. L. Nicolson, Science 173, 720 (1972).
P. G. Saffman and M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975).
G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).
L. Zhang and S. Granick, Proc. Natl. Acad. Sci. U.S.A. 102, 9118 (2005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McGillivray, D.J., Valincius, G., Vanderah, D.J. et al. Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes. Biointerphases 2, 21–33 (2007). https://doi.org/10.1116/1.2709308
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1116/1.2709308