Skip to main content

Journal for Biophysical Chemistry

Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes

Abstract

Surface-tethered biomimetic bilayer membranes (tethered bilayer lipid membranes (tBLMs)) were formed on gold surfaces from phospholipids and a synthetic 1-thiahexa(ethylene oxide) lipid, WC14. They were characterized using electrochemical impedance spectroscopy, neutron reflection (NR), and Fourier-transform infrared reflection-absorption spectroscopy (FT-IRRAS) to obtain functional and structural information. The authors found that electrically insulating membranes (conductance and capacitance as low as 1 μS cm−2 and 0.6 μF cm−2, respectively) with high surface coverage (>95% completion of the outer leaflet) can be formed from a range of lipids in a simple two-step process that consists of the formation of a self-assembled monolayer (SAM) and bilayer completion by “rapid solvent exchange.” NR provided a molecularly resolved characterization of the interface architecture and, in particular, the constitution of the space between the tBLM and the solid support. In tBLMs based on SAMs of pure WC14, the hexa(ethylene oxide) tether region had low hydration even though FT-IRRAS showed that this region is structurally disordered. However, on mixed SAMs made from the coadsorption of WC14 with a short-chain “backfiller,” ß-mercaptoethanol, the submembrane spaces between the tBLM and the substrates contained up to 60% exchangeable solvent by volume, as judged from NR and contrast variation of the solvent. Complete and stable “sparsely tethered” BLMs (stBLMs) can be readily prepared from SAMs chemisorbed from solutions with low WC14 proportions. Phospholipids with unsaturated or saturated, straight or branched chains all formed qualitatively similar stBLMs.

References

  1. M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  2. C. Erdelen et al., Langmuir 10, 1246 (1994).

    Article  CAS  Google Scholar 

  3. E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  4. C. A. Naumann, O. Prucker, T. Lehmann, J. Rühe, W. Knoll, and C. W. Frank, Biomacromolecules 3, 27 (2002).

    Article  CAS  Google Scholar 

  5. B. A. Cornell, V. L. B. Braach-Maksvytis, L. B. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997).

    Article  CAS  Google Scholar 

  6. C. W. Meuse, S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant, Biophys. J. 74, 1388 (1998).

    Article  CAS  Google Scholar 

  7. Y. L. Cheng, N. Boden, R. J. Bushby, S. Clarkson, S. D. Evans, P. F. Knowles, A. Marsh, and R. E. Miles, Langmuir 14, 839 (1998).

    Article  CAS  Google Scholar 

  8. M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).

    Article  CAS  Google Scholar 

  9. R. Naumann et al., Langmuir 19, 5435 (2003).

    Article  CAS  Google Scholar 

  10. S. Terrettaz, M. Mayer, and H. Vogel, Langmuir 19, 5567 (2003).

    Article  CAS  Google Scholar 

  11. C. Rossi, J. Homand, C. Bauche, H. Hamdi, D. Ladant, and J. Chopineau, Biochemistry 42, 15273 (2003).

    Article  CAS  Google Scholar 

  12. F. Albertorio, A. J. Diaz, T. Yang, V. A. Chapa, S. Kataoka, E. T. Castellana, and P. S. Cremer, Langmuir 21, 7476 (2005).

    Article  CAS  Google Scholar 

  13. L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).

    Article  CAS  Google Scholar 

  14. M. Tanaka, MRS Bull. 31, 513 (2006).

    Article  CAS  Google Scholar 

  15. L. Zhang and S. Granick, MRS Bull. 31, 527 (2006).

    Article  CAS  Google Scholar 

  16. C. Hamai, T. Yang, S. Kataoka, P. S. Cremer, and S. M. Musser, Biophys. J. 90, 1241 (2006).

    Article  CAS  Google Scholar 

  17. V. Kiessling, J. M. Crane, and L. K. Tamm, Biophys. J. 91, 3313 (2006).

    Article  CAS  Google Scholar 

  18. Y. Fang, Y. Hong, B. Webb, and J. Lahiri, MRS Bull. 31, 541 (2006).

    Article  CAS  Google Scholar 

  19. S. Daniel, F. Albertorio, and P. S. Cremer, MRS Bull. 31, 536 (2006).

    Article  CAS  Google Scholar 

  20. I. Burgess, M. Li, S. L. Horswell, G. Szymanski, J. Lipkowski, J. Majewski, and S. Satija, Biophys. J. 86, 1763 (2004).

    Article  CAS  Google Scholar 

  21. B. W. Koenig, S. Krueger, W. J. Orts, C. F. Majkrzak, N. F. Berk, J. V. Silverton, and K. Gawrisch, Langmuir 12, 1343 (1996).

    Article  CAS  Google Scholar 

  22. G. Krishna, J. Schulte, B. A. Cornell, R. Pace, L. Wieczorek, and P. D. Osman, Langmuir 17, 4858 (2001).

    Article  CAS  Google Scholar 

  23. G. Krishna, J. Schulte, B. A. Cornell, R. J. Pace, and P. D. Osman, Langmuir 19, 2294 (2003).

    Article  CAS  Google Scholar 

  24. B. Raguse, V. L. B. Braach-Maksvytis, B. A. Cornell, L. B. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).

    Article  CAS  Google Scholar 

  25. D. J. Vanderah, R. S. Gates, V. Silin, D. N. Zeiger, J. T. Woodward, C. W. Meuse, G. Valincius, and B. Nickel, Langmuir 19, 2612 (2003).

    Article  CAS  Google Scholar 

  26. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).

    Article  CAS  Google Scholar 

  27. D. J. McGillivray, G. Valincius, F. Heinrich, J. W. F. Robertson, D. J. Vanderah, W. Febo-Ayala, I. Ignatjev, M. Lösche, and J. J. Kasianowicz (submitted).

  28. Certain commercial materials, equipment, and instruments are identified in this paper in order to specify the experimental procedure as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials, equipment, or instruments identified are necessarily the best available for the purpose.

  29. See EPAPS Document No. E-BJIOBN-2-001701 for a complete description of the synthesis and characterization of 20-tetradecyloxy-3 6, 9, 12, 15, 18, 22-heptaoxahexatricontane-1-thiol (WC14). This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

  30. D. J. Vanderah, C. W. Meuse, V. Silin, and A. L. Plant, Langmuir 14, 6916 (1998).

    Article  CAS  Google Scholar 

  31. I. D. Raistrick, D. R. Franceschetti, and J. R. Macdonald, in Impedance Spectroscopy: Theory, Experiment, and Applications, edited by E. Barsoukov and J. R. Macdonald (Wiley, New York, 2005), p. 27.

    Chapter  Google Scholar 

  32. R. K. Burstein, Elektrokhimiya 3, 349 (1967).

    Google Scholar 

  33. J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002).

    Article  CAS  Google Scholar 

  34. J. A. Dura et al., Rev. Sci. Instrum. 77, 074301 (2006).

    Article  Google Scholar 

  35. P. A. Kienzle, M. Doucet, D. J. McGillivray, K. V. O’Donovan, N. F. Berk, and C. F. Majkrzak (2000–2006), http://www.ncnr.nist.gov/reflpak

  36. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  37. www.ncnr.nist.gov/resources/n-lengths/list.html

  38. D. A. Doshi, E. B. Watkins, J. N. Israelachvili, and J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).

    Article  CAS  Google Scholar 

  39. D. A. Lowy and H. O. Finklea, Electrochim. Acta 42, 1325 (1997).

    Article  CAS  Google Scholar 

  40. C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

    Article  Google Scholar 

  41. The contribution of the Helmholtz layer is estimated as C SAM=(C −1 SAM +C −1 H −1, where C SAM is the corrected SAM capacitance and C H ≈10 (μF cm−2. We estimate the relative uncertainty, due to uncertainty in C H , ΔC′/SAM≈10%.

  42. M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).

    Article  CAS  Google Scholar 

  43. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  44. M. A. K. Dissanayake and R. Frech, Macromolecules 28, 5312 (1995).

    Article  CAS  Google Scholar 

  45. D. J. Vanderah, J. Arsenault, H. La, R. S. Gates, V. Silin, C. W. Meuse, and G. Valincius, Langmuir 19, 3752 (2003).

    Article  CAS  Google Scholar 

  46. V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys. 71, 779 (1999).

    Article  CAS  Google Scholar 

  47. A more complete rationalization of this model will be given elsewhere #G. Valincius and F. Ivanauskas (unpublished)].

  48. R. De Levie, Electrochim. Acta 8, 751 (1963).

    Article  Google Scholar 

  49. H. Keiser, K. D. Beccu, and M. A. Gutjahr, Electrochim. Acta 21, 539 (1976).

    Article  CAS  Google Scholar 

  50. T. Charitat, E. Bellet-Amalric, G. Fragneto, and F. Graner, Eur. Phys. J. B 8, 583 (1999).

    Article  CAS  Google Scholar 

  51. C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc. 110, 3665 (1988).

    Article  CAS  Google Scholar 

  52. D. Needham and E. Evans, Biochemistry 27, 8261 (1988).

    Article  CAS  Google Scholar 

  53. S. J. Singer and G. L. Nicolson, Science 173, 720 (1972).

    Article  Google Scholar 

  54. P. G. Saffman and M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975).

    Article  CAS  Google Scholar 

  55. G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).

    Article  CAS  Google Scholar 

  56. L. Zhang and S. Granick, Proc. Natl. Acad. Sci. U.S.A. 102, 9118 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Löscheb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGillivray, D.J., Valincius, G., Vanderah, D.J. et al. Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes. Biointerphases 2, 21–33 (2007). https://doi.org/10.1116/1.2709308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2709308