Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Characterization of protein resistant, grafted methacrylate polymer layers bearing oligo(ethylene glycol) and phosphorylcholine side chains by neutron reflectometry

Abstract

Neutron reflectometry was used to investigate the structures of end-tethered protein resistant polymer layers based on poly(oligo(ethylene glycol) methyl ether methacrylate) [poly(OEGMA)] and poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)]. Layers having different graft densities were studied in both the dry and wet states. A stretched parabolic model was used to fit the neutron data, resulting in a one-dimensional scattering length density profile of the polymer volume fraction normal to the film. Measured in D2O, the cutoff thicknesses of OEGMA and MPC layers at high graft density (0.39 chains/nm2 for OEGMA and 0.30 chains/nm2 for MPC) and a chain length of 200 repeat units were 450 and 470 Å, respectively, close to their contour length of 500 Å, suggesting that the grafts become highly hydrated when exposed to water. It was also found that at similar graft density and chain length, the volume fraction profiles of poly(OEGMA) and poly(MPC) layers are similar, in line with the authors’ previous results showing that these surfaces have similar protein resistance [W. Feng et al., BioInterphases 1, 50 (2006)]. The possible correlation of protein resistance to water content as indicated by the average number of water molecules per ethylene oxide (N w,EO ) or phosphorylcholine (N w,PC ) moiety was investigated. N w,EO and N w,PC , estimated from the volume fraction data, increased with decreasing graft density, and when compared to the reported number of water molecules in the hydration layers of EO and PC residues, led to the conclusion that water content slightly greater than the water of hydration resulted in protein resistant surfaces, whereas water content either less than or greatly in excess of the water of hydration resulted in layers of reduced protein resistance.

References

  1. 1

    Proteins at Interfaces II, Fundamentals and Applications, ACS Symposium Series No. 602, edited by T. A. Horbett and J. L. Brash (American Chemical Society, Washington DC, 1995).

    Google Scholar 

  2. 2

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  CAS  Google Scholar 

  3. 3

    J. L. Brash, J. Biomater. Sci., Polym. Ed. 11, 1135 (2000).

    Article  CAS  Google Scholar 

  4. 4

    M. Tirrell, E. Kokkoli, and M. Biesalski, Surf. Sci. 500, 61 (2002).

    Article  CAS  Google Scholar 

  5. 5

    B. Kasemo, Surf. Sci. 500, 656 (2002).

    Article  CAS  Google Scholar 

  6. 6

    J. H. Lee and J. D. Andrade, Prog. Polym. Sci. 20, 1043 (1995).

    Article  CAS  Google Scholar 

  7. 7

    M. Morra, J. Biomater. Sci., Polym. Ed. 11, 547 (2000).

    Article  CAS  Google Scholar 

  8. 8

    A. L. Lewis, Colloids Surf., B 18, 261 (2000).

    Article  CAS  Google Scholar 

  9. 9

    P. Vermette and L. Meagher, Colloids Surf., B 28, 153 (2003).

    Article  CAS  Google Scholar 

  10. 10

    Y. Iwasaki and K. Ishihara, Anal. Bioanal. Chem. 381, 534 (2005).

    Article  CAS  Google Scholar 

  11. 11

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  12. 12

    S. J. Sofia, V. Premnath, and E. W. Merrill, Macromolecules 31, 5059 (1998).

    Article  Google Scholar 

  13. 13

    W. Norde and D. Gage, Langmuir 20, 4162 (2004).

    Article  CAS  Google Scholar 

  14. 14

    G. L. Kenausis et al., J. Phys. Chem. B 104, 3298 (2000).

    Article  CAS  Google Scholar 

  15. 15

    L. D. Unsworth, H. Sheardown, and J. L. Brash, Langmuir 21, 1036 (2005).

    Article  CAS  Google Scholar 

  16. 16

    D. J. Vanderah, L. La, J. Naff, V. Silin, and K. A. Rubinson, J. Am. Chem. Soc. 126, 13639 (2004).

    Article  CAS  Google Scholar 

  17. 17

    J. Zheng, L. Y. Li, S. F. Chen, and S. Y. Jiang, Langmuir 20, 8931 (2004).

    Article  CAS  Google Scholar 

  18. 18

    L. D. Unsworth, Z. Tun, H. Sheardown, and J. L. Brash, J. Colloid Interface Sci. 296, 520 (2006).

    Article  CAS  Google Scholar 

  19. 19

    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).

    Article  CAS  Google Scholar 

  20. 20

    R. L. C. Wang, H. J. Kreuzer, and M. Grunze, J. Phys. Chem. 101, 9767 (1997).

    Article  CAS  Google Scholar 

  21. 21

    R. Y. Wang, M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, and M. Grunze, J. Chem. Phys. 122, 164702 (2005).

    Article  CAS  Google Scholar 

  22. 22

    K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasake, and N. Nakabayashi, J. Biomed. Mater. Res. 39, 323 (1998).

    Article  CAS  Google Scholar 

  23. 23

    H. Kitano, K. Sudo, K. Ichikawa, M. Ide, and K. Ishihara, J. Phys. Chem. B 104, 11425 (2000).

    Article  CAS  Google Scholar 

  24. 24

    H. Kitano, M. Imai, T. Mori, M. Gemmei-Ide, Y. Yokoyama, and K. Ishihara, Langmuir 19, 10260 (2003).

    Article  CAS  Google Scholar 

  25. 25

    W. Feng, S. P. Zhu, K. Ishihara, and J. L. Brash, BioInterphases 1, 50 (2006).

    Article  CAS  Google Scholar 

  26. 26

    J. R. Lu, R. K. Thomas, and J. Penfold, Adv. Colloid Interface Sci. 84, 43 (2000).

    Article  Google Scholar 

  27. 27

    M. S. Kent, L. T. Lee, B. J. Factor, F. Rondelez, and G. S. Smith, J. Chem. Phys. 103, 2320 (1995).

    Article  CAS  Google Scholar 

  28. 28

    A. Karim, S. K. Satija, J. F. Douglas, J. F. Ankner, and L. Fetters, Phys. Rev. Lett. 73, 3407 (1994).

    Article  CAS  Google Scholar 

  29. 29

    H. Yim, M. S. Kent, S. Mendez, G. P. Lopez, S. Satija, and Y. Seo, Macromolecules 39, 3420 (2006).

    Article  CAS  Google Scholar 

  30. 30

    W. Feng, J. Brash, and S. P. Zhu, J. Polym. Sci., Part A: Polym. Chem. 42, 2931 (2004).

    Article  CAS  Google Scholar 

  31. 31

    M. Husseman et al., Macromolecules 32, 1424 (1999).

    Article  CAS  Google Scholar 

  32. 32

    K. Matyjaszewski et al., Macromolecules 32, 8716 (1999).

    Article  CAS  Google Scholar 

  33. 33

    W. Feng, R. X. Chen, J. L. Brash, and S. P. Zhu, Macromol. Rapid Commun. 26, 1383 (2005).

    Article  CAS  Google Scholar 

  34. 34

    W. Feng, J. L. Brash, and S. P. Zhu, Biomaterials 27, 847 (2006).

    Article  CAS  Google Scholar 

  35. 35

    K. Jankova, X. Y. Chen, J. Kops, and W. Batsberg, Macromolecules 31, 538 (1998).

    Article  CAS  Google Scholar 

  36. 36

    R. Iwata, P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, and Y. Iwasaki, Biomacromolecules 5, 2308 (2004).

    Article  CAS  Google Scholar 

  37. 37

    K. Yamamoto, Y. Miwa, H. Tanaka, M. Sakaguchi, and S. Shimada, J. Polym. Sci., Part A: Polym. Chem. 40, 3350 (2002).

    Article  CAS  Google Scholar 

  38. 38

    T. A. Harroun, H. Fritzsche, M. J. Watson, K. G. Yager, O. M. Tanchak, C. J. Barrett, and J. Katsaras, Rev. Sci. Instrum. 76, 065101 (2005).

    Article  Google Scholar 

  39. 39

    M. S. Kent, J. Majewski, G. S. Smith, L. T. Lee, and S. Satija, J. Chem. Phys. 108, 5635 (1998).

    Article  CAS  Google Scholar 

  40. 40

    S. M. Sirard, R. R. Gupta, T. P. Russell, J. J. Watkins, P. F. Green, and K. P. Johnston, Macromolecules 36, 3365 (2003).

    Article  CAS  Google Scholar 

  41. 41

    W. Feng, S. P. Zhu, K. Ishihara, and J. L. Brash, Langmuir 21, 5980 (2005).

    Article  CAS  Google Scholar 

  42. 42

    P. G. de Gennes, Macromolecules 13, 1069 (1980).

    Article  Google Scholar 

  43. 43

    S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules 21, 2610 (1998).

    Article  Google Scholar 

  44. 44

    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).

    Article  CAS  Google Scholar 

  45. 45

    S. T. Milner, Science 251, 905 (1991).

    Article  CAS  Google Scholar 

  46. 46

    M. S. Kent, L. T. Lee, B. Farnoux, and F. Rondelez, Macromolecules 25, 6240 (1992).

    Article  CAS  Google Scholar 

  47. 47

    M. S. Kent, B. J. Factor, S. Satija, P. Gallagher, and G. S. Smith, Macromolecules 29, 2843 (1996).

    Article  CAS  Google Scholar 

  48. 48

    S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules 22, 853 (1989).

    Article  CAS  Google Scholar 

  49. 49

    T. M. Birshtein, Y. V. Liatskaya, and E. B. Zhulina, Polymer 31, 2185 (1990).

    Article  CAS  Google Scholar 

  50. 50

    G. Kritikos and A. F. Terzis, Polymer 46, 8355 (2005).

    Article  CAS  Google Scholar 

  51. 51

    H. Yim, M. S. Kent, S. Mendez, S. S. Balamurugan, S. Balamurugan, G. P. Lopez, and S. Satija, Macromolecules 37, 1994 (2004).

    Article  CAS  Google Scholar 

  52. 52

    C. Devaux, F. Cousin, E. Beyou, and J. P. Chapel, Macromolecules 38, 4296 (2005).

    Article  CAS  Google Scholar 

  53. 53

    R. Levicky, N. Koneripalli, M. Tirrell, and S. Satija, Macromolecules 31, 3731 (1998).

    Article  CAS  Google Scholar 

  54. 54

    N. J. Tao, S. M. Lindsay, and A. Rupprecht, Biopolymers 28, 1019 (1989).

    Article  CAS  Google Scholar 

  55. 55

    E. E. Dormidontova, Macromolecules 35, 987 (2002).

    Article  CAS  Google Scholar 

  56. 56

    G. Maisano, D. Majolino, P. Migliardo, S. Venuto, F. Aliotta, and S. Magazu, Mol. Phys. 78, 421 (1993).

    Article  CAS  Google Scholar 

  57. 57

    J. Fick, R. Steitz, V. Leiner, S. Tokumitsu, M. Himmelhaus, and M. Grunze, Langmuir 20, 3848 (2004).

    Article  CAS  Google Scholar 

  58. 58

    O. Albrecht, H. Gruler, and E. Sackmann, J. Phys. (Paris) 39, 301 (1978).

    Article  CAS  Google Scholar 

  59. 59

    C. Naumann, T. Brumm, A. R. Rennie, J. Penfold, and T. M. Bayerl, Langmuir 11, 3948 (1995).

    Article  CAS  Google Scholar 

  60. 60

    M. L. Berkowitz, D. L. Bostick, and S. Pandit, Chem. Rev. (Washington, D.C.) 106, 1527 (2006).

    CAS  Google Scholar 

  61. 61

    S. A. Pandit, D. Bostick, and M. L. Lerkowitz, J. Chem. Phys. 119, 2199 (2003).

    Article  CAS  Google Scholar 

  62. 62

    M. J. Ruocco and G. G. Shipley, Biochim. Biophys. Acta 691, 309 (1982).

    Article  CAS  Google Scholar 

  63. 63

    M. Yaseen, J. R. Lu, J. R. P. Webster, and J. Penfold, Langmuir 22, 5825 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, W., Nieh, M., Zhu, S. et al. Characterization of protein resistant, grafted methacrylate polymer layers bearing oligo(ethylene glycol) and phosphorylcholine side chains by neutron reflectometry. Biointerphases 2, 34–43 (2007). https://doi.org/10.1116/1.2711705

Download citation