Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids


The concentration of mineral solutes in mammalian blood is considerably higher than that predicted by their solubility product. The plasma protein fetuin-A inhibits calcium phosphate deposition by forming colloidal calciprotein particles (CPPs). In this article the authors present a detailed small angle neutron scattering study including contrast variation analysis providing detailed quantitative information on the three-dimensional topology of the CPPs and on their morphogenesis. In detail the authors found the following: (i) A two stage growth process showing spontaneously formed primary particles with a size of about 500 Å diameter that subsequently transformed to 1000 Å sized particles which were stable for at least 24 h. (ii) A particular shielding topology was observed for the second CPP state, namely, that a densely packed fetuin-A monolayer covers a mineral core and thereby prevents further crystal growth. (iii) Transmission electron microscopy analysis of in vitro synthesized second state CPPs revealed striking similarities to material retrieved from a human peritonitis patient. This latter finding underscores the importance of short- and long-term stabilizations of CPPs by fetuin-A to enable clearing of mineral debris in the body.


  1. 1

    C. Schäfer et al., J. Clin. Invest. 112, 357 (2003).

    Google Scholar 

  2. 2

    M. Ketteler et al., Lancet 361, 827 (2003).

    Article  CAS  Google Scholar 

  3. 3

    A. Heiss, A. DuChesne, B. Denecke, J. Grötzinger, K. Yamamoto, T. Renné, and W. Jahnen-Dechent, J. Biol. Chem. 278, 13333 (2003).

    Article  CAS  Google Scholar 

  4. 4

    P. A. Price and J. E. Lim, J. Biol. Chem. 278, 22144 (2003).

    Article  CAS  Google Scholar 

  5. 5

  6. 6

    G. Zaccai, J. Phys. Chem. Solids 60, 1291 (1999).

    Article  CAS  Google Scholar 

  7. 7

    H. Endo, D. Schwahn, and H. Cölfen, J. Chem. Phys. 120, 9410 (2004).

    Article  CAS  Google Scholar 

  8. 8

    G. Beaucage, J. Appl. Crystallogr. 29, 134 (1996).

    Article  CAS  Google Scholar 

  9. 9

    T. Schinke, C. Amendt, A. Trindl, O. Pöschke, W. Müller-Esterl, and W. Jahnen-Dechent, J. Biol. Chem. 271, 20789 (1996).

    Article  CAS  Google Scholar 

  10. 10

    A. Heiss and D. Schwahn, in Handbook of Biomineralization (Wiley-VCH, Weinheim, Germany, 2007), Vol. 1, pp. 415–431.

    Google Scholar 

  11. 11

    J. C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  12. 12

    J. S. Higgins and H. C. Benoit, Polymers and Neutron Scattering (Clarendon, Oxford, 1994, pp. 116–191.

    Google Scholar 

  13. 13

    N. C. Blumenthal, F. Betts, and A. S. Posner, Calcif. Tissue Res. 18, 81 (1975).

    Article  CAS  Google Scholar 

  14. 14

    L. Addadi and S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 82, 4110 (1985).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to A. Heiss or D. Schwahn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heiss, A., Jahnen-Dechent, W., Endo, H. et al. Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2, 16–20 (2007).

Download citation