Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures

Abstract

A generic protocol for the creation of material-mediated self-assembled patterns of streptavidin, defined solely by patterns of gold and SiO2, is presented. Protein-adsorption resistance of selected regions was obtained by material-specific adsorption of thiol-modified poly(ethylene)glycol (thiol-PEG) on gold followed by adsorption of poly-l-lysine (PLL) modified PEG (PLL-g-PEG) on SiO2. Selective streptavidin binding to either gold or SiO2 (or both) was ensured by introducing biotin-modified thiolated (thiol-biotin) and/or biotin-modified PLL-g-PEG (PLL-g-PEGbiotin) compounds. The introduction of biotin did not influence the protein-adsorption resistance. On the macroscopic scale, the protein-adsorption-resistant properties and the streptavidin-binding capacity were optimized using quartz crystal microbalance with dissipation monitoring. The reproduction of micrometer-scale gold patterns on SiO2 into patterns of streptavidin was verified using fluorescence microscopy, while the compatibility of the material-specific surface-modification strategy with nanoscale features was accomplished by modifying a localized surface plasmon resonance (LSPR) active template, defined by randomly distributed nanoapertures in a thin gold film on SiO2. The demonstrated compatibility of the latter substrate with LSPR-based label-free sensing of biorecognition reactions, combined with the fact that all compounds utilized are commercially available, makes the surface-modification protocol attractive as a generic surface modification solution for a broad range of biorecognition-based assays.

References

  1. 1

    M. Dufva, Biomol. Eng. 22, 173 (2005).

    Article  CAS  Google Scholar 

  2. 2

    V. G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, and G. Childs, Nat. Genet. 21, 15 (1999).

    Article  CAS  Google Scholar 

  3. 3

    S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, Science 251, 767 (1991).

    Article  CAS  Google Scholar 

  4. 4

    A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, Adv. Mater. (Weinheim, Ger.) 12, 1067 (2000).

    Article  CAS  Google Scholar 

  5. 5

    J. P. Renault et al., J. Phys. Chem. B 107, 703 (2003).

    Article  CAS  Google Scholar 

  6. 6

    J. Foley, H. Schmid, R. Stutz, and E. Delamarche, Langmuir 21, 11296 (2005).

    Article  CAS  Google Scholar 

  7. 7

    P. S. Cremer and S. G. Boxer, J. Phys. Chem. B 103, 2554 (1999).

    Article  CAS  Google Scholar 

  8. 8

    R. Marie, J. P. Beech, J. Vörös, J. O. Tegenfeldt, and F. Höök, Langmuir 22, 10103 (2006).

    Article  CAS  Google Scholar 

  9. 9

    H. J. Lee, Y. Li, A. W. Wark, and R. M. Corn, Anal. Chem. 77, 5096 (2005).

    Article  CAS  Google Scholar 

  10. 10

    D. Stamou, C. Duschl, E. Delamarche, and H. Vogel, Angew. Chem., Int. Ed. 42, 5580 (2003).

    Article  CAS  Google Scholar 

  11. 11

    D. Falconnet, D. Pasqui, S. Park, R. Eckert, H. Schift, J. Gobrecht, R. Barbucci, and M. Textor, Nano Lett. 4, 1909 (2004).

    Article  CAS  Google Scholar 

  12. 12

    D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Biomaterials 27, 3044 (2006).

    Article  CAS  Google Scholar 

  13. 13

    Y. Chen and A. Pépin, Electrophoresis 22, 187 (2001).

    Article  CAS  Google Scholar 

  14. 14

    M. Arnold, E. Ada Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J. P. Spatz, ChemPhysChem 5, 383 (2004).

    Article  CAS  Google Scholar 

  15. 15

    S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, and F. Hook, ChemBioChem 4, 339 (2003).

    Article  CAS  Google Scholar 

  16. 16

    A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 (2005).

    Article  CAS  Google Scholar 

  17. 17

    C. Hoffmann and G. E. M. Tovar, J. Colloid Interface Sci. 295, 427 (2006).

    Article  CAS  Google Scholar 

  18. 18

    R. Michel, I. Reviakine, D. Sutherland, C. Fokas, G. Csucs, G. Danuser, N. D. Spencer, and M. Textor, Langmuir 18, 8580 (2002).

    Article  CAS  Google Scholar 

  19. 19

    N. P. Huang, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).

    Article  CAS  Google Scholar 

  20. 20

    F. Höök, C. Larsson, and C. Fant, Encyclopedia of Surface and Colloid Science (Marcel Dekker, New York, 2001), pp. 774–791.

    Google Scholar 

  21. 21

    B. Städler, D. Falconnet, I. Pfeiffer, F. Höök, and J. Vörös, Langmuir 20, 11348 (2004).

    Article  Google Scholar 

  22. 22

    F. Xu, G. Zhen, M. Textor, and W. Knoll, BioInterphases 1, 73 (2006).

    Article  CAS  Google Scholar 

  23. 23

    Y. Zhou, HXu, A. B Dahlin, J. Gustafson, C. A. K. Borrebæck, C. Wingren, B Lieberg, and F. Höök, BioInterphases (accepted).

  24. 24

    G. Stengel and W. Knoll, Nucleic Acids Res. 33, 69 (2005).

    Article  Google Scholar 

  25. 25

    A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, Anal. Chem. 78, 4416 (2006).

    Article  CAS  Google Scholar 

  26. 26

    L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 5, 2034 (2005).

    Article  CAS  Google Scholar 

  27. 27

    A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 (2004).

    Article  CAS  Google Scholar 

  28. 28

    A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).

    Article  CAS  Google Scholar 

  29. 29

    A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, Langmuir 20, 4813 (2004).

    Article  CAS  Google Scholar 

  30. 30

    A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, J. Am. Chem. Soc. 127, 14936 (2005).

    Article  CAS  Google Scholar 

  31. 31

    W. Knoll et al., Colloids Surf., A 161, 115 (2000).

    Article  CAS  Google Scholar 

  32. 32

    J. T. Mannion and H. G. Craighead, Biopolymers 85, 131 (2007).

    Article  CAS  Google Scholar 

  33. 33

    L. C. Brousseau, J. Am. Chem. Soc. 128, 11346 (2006).

    Article  CAS  Google Scholar 

  34. 34

    Y. Wei, C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002).

    Article  Google Scholar 

  35. 35

    R. Jin, Y. C. Cao, C. S. Thaxton, and C. A. Mirkin, Small 2, 375 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fredrik Höök.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marie, R., Dahlin, A.B., Tegenfeldt, J.O. et al. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases 2, 49–55 (2007). https://doi.org/10.1116/1.2717926

Download citation