Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures
Biointerphases volume 2, pages 49–55 (2007)
Abstract
A generic protocol for the creation of material-mediated self-assembled patterns of streptavidin, defined solely by patterns of gold and SiO2, is presented. Protein-adsorption resistance of selected regions was obtained by material-specific adsorption of thiol-modified poly(ethylene)glycol (thiol-PEG) on gold followed by adsorption of poly-l-lysine (PLL) modified PEG (PLL-g-PEG) on SiO2. Selective streptavidin binding to either gold or SiO2 (or both) was ensured by introducing biotin-modified thiolated (thiol-biotin) and/or biotin-modified PLL-g-PEG (PLL-g-PEGbiotin) compounds. The introduction of biotin did not influence the protein-adsorption resistance. On the macroscopic scale, the protein-adsorption-resistant properties and the streptavidin-binding capacity were optimized using quartz crystal microbalance with dissipation monitoring. The reproduction of micrometer-scale gold patterns on SiO2 into patterns of streptavidin was verified using fluorescence microscopy, while the compatibility of the material-specific surface-modification strategy with nanoscale features was accomplished by modifying a localized surface plasmon resonance (LSPR) active template, defined by randomly distributed nanoapertures in a thin gold film on SiO2. The demonstrated compatibility of the latter substrate with LSPR-based label-free sensing of biorecognition reactions, combined with the fact that all compounds utilized are commercially available, makes the surface-modification protocol attractive as a generic surface modification solution for a broad range of biorecognition-based assays.
References
M. Dufva, Biomol. Eng. 22, 173 (2005).
V. G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, and G. Childs, Nat. Genet. 21, 15 (1999).
S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, Science 251, 767 (1991).
A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, Adv. Mater. (Weinheim, Ger.) 12, 1067 (2000).
J. P. Renault et al., J. Phys. Chem. B 107, 703 (2003).
J. Foley, H. Schmid, R. Stutz, and E. Delamarche, Langmuir 21, 11296 (2005).
P. S. Cremer and S. G. Boxer, J. Phys. Chem. B 103, 2554 (1999).
R. Marie, J. P. Beech, J. Vörös, J. O. Tegenfeldt, and F. Höök, Langmuir 22, 10103 (2006).
H. J. Lee, Y. Li, A. W. Wark, and R. M. Corn, Anal. Chem. 77, 5096 (2005).
D. Stamou, C. Duschl, E. Delamarche, and H. Vogel, Angew. Chem., Int. Ed. 42, 5580 (2003).
D. Falconnet, D. Pasqui, S. Park, R. Eckert, H. Schift, J. Gobrecht, R. Barbucci, and M. Textor, Nano Lett. 4, 1909 (2004).
D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Biomaterials 27, 3044 (2006).
Y. Chen and A. Pépin, Electrophoresis 22, 187 (2001).
M. Arnold, E. Ada Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J. P. Spatz, ChemPhysChem 5, 383 (2004).
S. Svedhem, I. Pfeiffer, C. Larsson, C. Wingren, C. Borrebaeck, and F. Hook, ChemBioChem 4, 339 (2003).
A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, J. Am. Chem. Soc. 127, 5043 (2005).
C. Hoffmann and G. E. M. Tovar, J. Colloid Interface Sci. 295, 427 (2006).
R. Michel, I. Reviakine, D. Sutherland, C. Fokas, G. Csucs, G. Danuser, N. D. Spencer, and M. Textor, Langmuir 18, 8580 (2002).
N. P. Huang, J. Vörös, S. M. De Paul, M. Textor, and N. D. Spencer, Langmuir 18, 220 (2002).
F. Höök, C. Larsson, and C. Fant, Encyclopedia of Surface and Colloid Science (Marcel Dekker, New York, 2001), pp. 774–791.
B. Städler, D. Falconnet, I. Pfeiffer, F. Höök, and J. Vörös, Langmuir 20, 11348 (2004).
F. Xu, G. Zhen, M. Textor, and W. Knoll, BioInterphases 1, 73 (2006).
Y. Zhou, HXu, A. B Dahlin, J. Gustafson, C. A. K. Borrebæck, C. Wingren, B Lieberg, and F. Höök, BioInterphases (accepted).
G. Stengel and W. Knoll, Nucleic Acids Res. 33, 69 (2005).
A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, Anal. Chem. 78, 4416 (2006).
L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 5, 2034 (2005).
A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 109 (2004).
A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, Langmuir 20, 4813 (2004).
A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, J. Am. Chem. Soc. 127, 14936 (2005).
W. Knoll et al., Colloids Surf., A 161, 115 (2000).
J. T. Mannion and H. G. Craighead, Biopolymers 85, 131 (2007).
L. C. Brousseau, J. Am. Chem. Soc. 128, 11346 (2006).
Y. Wei, C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002).
R. Jin, Y. C. Cao, C. S. Thaxton, and C. A. Mirkin, Small 2, 375 (2006).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marie, R., Dahlin, A.B., Tegenfeldt, J.O. et al. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases 2, 49–55 (2007). https://doi.org/10.1116/1.2717926
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1116/1.2717926