Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Imaging large arrays of supported lipid bilayers with a macroscope

Abstract

Herein, the authors present fluorescence resonance energy transfer (FRET) and two-dimensional protein saturation data acquired from spatially addressed arrays of solid supported lipid bilayers (SLBs). The SLB arrays were imaged with an epifluorescence/total internal reflection macroscope. The macroscope allowed 1× imaging and had a relatively high numerical aperture (0.4). Such powerful light gathering and large field of view capabilities make it possible to simultaneously image dozens of addressed SLBs. Three experiments have been performed. First, a 9×7 array of supported lipid bilayer was fabricated and imaged in which each bilayer element was individually addressed. Second, a FRET assay was developed between Texas Red-DHPE (1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine) and NBD-PE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-n-(7-nitro-2-1,3-benzoxadiazol-4-yl)). The concentration of dye could be varied at each address and the value of the Förster radius (7.3±0.6 nm) was easily abstracted. Third, a ligand/receptor recognition assay was designed to show the two-dimensional number density of proteins which can be bound at saturation. It was found for the streptavidin/biotin pair that the protein saturated at the interface above 3 mol % biotin concentration. This corresponded to a two-dimensional footprint of 40 nm2 for the streptavidin molecule. These results clearly open the door to using individually addressed bilayers for obtaining large amounts of biophysical data at the supported bilayer/aqueous interface. Such abilities will be crucial to obtaining sufficient data for determining the interfacial mechanisms for a variety of membrane/ protein interactions.

References

  1. 1

    L. Kam and S. G. Boxer, Langmuir 19, 1624 (2003).

    Article  CAS  Google Scholar 

  2. 2

    J. M. Moran-Mirabal et al., Biophys. J. 89, 296 (2005).

    Article  CAS  Google Scholar 

  3. 3

    C. R. Poulsen et al., Anal. Chem. 77, 667 (2005).

    Article  CAS  Google Scholar 

  4. 4

    T. Yang et al., J. Am. Chem. Soc. 125, 4779 (2003).

    Article  CAS  Google Scholar 

  5. 5

    H. B. Mao, T. L. Yang, and P. S. Cremer, Cremer, J. Am. Chem. Soc. 124, 4432 (2002).

    Article  CAS  Google Scholar 

  6. 6

    S. Majd and M. Mayer, Angew. Chem., Int. Ed. 44, 6697 (2005).

    Article  CAS  Google Scholar 

  7. 7

    L. A. Kung et al., Adv. Mater. (Weinheim, Ger.) 12, 731 (2000).

    Article  CAS  Google Scholar 

  8. 8

    P. S. Cremer and T. L. Yang, J. Am. Chem. Soc. 121, 8130 (1999).

    Article  CAS  Google Scholar 

  9. 9

    J. T. Groves, N. Ulman, and S. G. Boxer, Science 275, 651 (1997).

    Article  CAS  Google Scholar 

  10. 10

    T. L. Yang, E. E. Simanek, and P. Cremer, Anal. Chem. 72, 2587 (2000).

    Article  CAS  Google Scholar 

  11. 11

    V.Yamazaki et al., BMC Biotechnology5 (2005).

  12. 12

    A. R. Sapuri, M. M. Baksh, and J. T. Groves, Langmuir 19, 1606 (2003).

    Article  CAS  Google Scholar 

  13. 13

    J. S. Hovis and S. G. Boxer, Langmuir 17, 3400 (2001).

    Article  CAS  Google Scholar 

  14. 14

    L. A. Kung et al., Langmuir 16, 6773 (2000).

    Article  CAS  Google Scholar 

  15. 15

    L. K. Tamm, in Optical Microscopy: Emerging Methods and Applications, edited by B. Herman and J. J. Lemasters (Academic, San Diego, 1993), p. 295.

    Google Scholar 

  16. 16

    T. L. Yang et al., Anal. Chem. 73, 165 (2001).

    Article  CAS  Google Scholar 

  17. 17

    E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  18. 18

    C. K. Yee, M. L. Amweg, and A. N. Parikh, J. Am. Chem. Soc. 126, 13962 (2004).

    Article  CAS  Google Scholar 

  19. 19

    K. Morigaki et al., Angew. Chem., Int. Ed. 40, 172 (2001).

    Article  CAS  Google Scholar 

  20. 20

    B. Ilic and H. G. Craighead, Biomed. Microdevices 2, 317 (2000).

    Article  CAS  Google Scholar 

  21. 21

    E. H. Ratzlaff and A. Grinvald, J. Neurosci. Methods 36, 127 (1991).

    Article  CAS  Google Scholar 

  22. 22

    S. Sasaki et al., Neuroimage 17, 1240 (2002).

    Article  Google Scholar 

  23. 23

    I. Vanzetta and A. Grinvald, Science 286, 1555 (1999).

    Article  CAS  Google Scholar 

  24. 24

    L. Lefkowitz, The Manual of Close-Up Photography (American Photographic Book, New York, 1979).

    Google Scholar 

  25. 25

    J. C. Yarrow et al., BMC Biotechnology 4 (2004).

  26. 26

    M. Bally et al., Surf. Interface Anal. 38, 1442 (2006).

    Article  CAS  Google Scholar 

  27. 27

    A. A. Brian and H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 81, 6159 (1984).

    Article  CAS  Google Scholar 

  28. 28

    M. J. Hope et al., Biochim. Biophys. Acta 812, 55 (1985).

    Article  CAS  Google Scholar 

  29. 29

    H. Bayley and P. S. Cremer, Nature (London) 413, 226 (2001).

    Article  CAS  Google Scholar 

  30. 30

    L. Stryer, Annu. Rev. Biochem. 47, 819 (1978).

    Article  CAS  Google Scholar 

  31. 31

    E. Li and K. Hristova, Langmuir 20, 9053 (2004).

    Article  CAS  Google Scholar 

  32. 32

    R. Parthasarathy et al., J. Phys. Chem. B 108, 649 (2004).

    Article  CAS  Google Scholar 

  33. 33

    R. M. Clegg, Methods Enzymol. 211, 353 (1992).

    Article  CAS  Google Scholar 

  34. 34

    D. E. Wolf et al., Biochemistry 31, 2865 (1992).

    Article  CAS  Google Scholar 

  35. 35

    A. K. Kenworthy and M. Edidin, J. Cell Biol. 142, 69 (1998).

    Article  CAS  Google Scholar 

  36. 36

    T. G. Dewey and G. G. Hammes, Biophys. J. 32, 1023 (1980).

    Article  CAS  Google Scholar 

  37. 37

    H. B. Mao, T. L. Yang, and P. S. Cremer, Anal. Chem. 74, 379 (2002).

    Article  CAS  Google Scholar 

  38. 38

    A. Chilkoti and P. S. Stayton, J. Am. Chem. Soc. 117, 10622 (1995).

    Article  CAS  Google Scholar 

  39. 39

    X. H. Zhang and V. T. Moy, Biophys. Chem. 104, 271 (2003).

    Article  CAS  Google Scholar 

  40. 40

    E. E. Kim and H. W. Wyckoff, J. Mol. Biol. 218, 449 (1991).

    Article  CAS  Google Scholar 

  41. 41

    S. A. Darst et al., Biophys. J. 59, 387 (1991).

    Article  CAS  Google Scholar 

  42. 42

    F. J. Schmitt et al., Makromol. Chem., Macromol. Symp. 46, 133 (1991).

    Article  CAS  Google Scholar 

  43. 43

    A. Schmidt et al., Biophys. J. 63, 1385 (1992).

    Article  CAS  Google Scholar 

  44. 44

    S. A. Hemming et al., J. Mol. Biol. 246, 308 (1995).

    Article  CAS  Google Scholar 

  45. 45

    L. S. Jung et al., Sens. Actuators B 54, 137 (1999).

    Article  Google Scholar 

  46. 46

    M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem., Int. Ed. 37, 2755 (1998).

    Article  CAS  Google Scholar 

  47. 47

    B. Nag et al., Proc. Natl. Acad. Sci. U.S.A. 90, 1604 (1993).

    Article  CAS  Google Scholar 

  48. 48

    M. Rao and S. Mayor, Biochim. Biophys. Acta 1746, 221 (2005).

    Article  CAS  Google Scholar 

  49. 49

    M. Dziedzicka-Wasylewska et al., Biochemistry 45, 8751 (2006).

    Article  CAS  Google Scholar 

  50. 50

    A. P. Wong and J. T. Groves, Proc. Natl. Acad. Sci. U.S.A. 99, 14147 (2002).

    Article  CAS  Google Scholar 

  51. 51

    W. F. DeGrado, H. Gratkowski, and J. D. Lear, Protein Sci. 12, 647 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul S. Cremer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castellana, E.T., Cremer, P.S. Imaging large arrays of supported lipid bilayers with a macroscope. Biointerphases 2, 57–63 (2007). https://doi.org/10.1116/1.2732312

Download citation