Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Imaging large arrays of supported lipid bilayers with a macroscope

Article metrics

  • 254 Accesses

  • 5 Citations

Abstract

Herein, the authors present fluorescence resonance energy transfer (FRET) and two-dimensional protein saturation data acquired from spatially addressed arrays of solid supported lipid bilayers (SLBs). The SLB arrays were imaged with an epifluorescence/total internal reflection macroscope. The macroscope allowed 1× imaging and had a relatively high numerical aperture (0.4). Such powerful light gathering and large field of view capabilities make it possible to simultaneously image dozens of addressed SLBs. Three experiments have been performed. First, a 9×7 array of supported lipid bilayer was fabricated and imaged in which each bilayer element was individually addressed. Second, a FRET assay was developed between Texas Red-DHPE (1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine) and NBD-PE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-n-(7-nitro-2-1,3-benzoxadiazol-4-yl)). The concentration of dye could be varied at each address and the value of the Förster radius (7.3±0.6 nm) was easily abstracted. Third, a ligand/receptor recognition assay was designed to show the two-dimensional number density of proteins which can be bound at saturation. It was found for the streptavidin/biotin pair that the protein saturated at the interface above 3 mol % biotin concentration. This corresponded to a two-dimensional footprint of 40 nm2 for the streptavidin molecule. These results clearly open the door to using individually addressed bilayers for obtaining large amounts of biophysical data at the supported bilayer/aqueous interface. Such abilities will be crucial to obtaining sufficient data for determining the interfacial mechanisms for a variety of membrane/ protein interactions.

References

  1. 1

    L. Kam and S. G. Boxer, Langmuir 19, 1624 (2003).

  2. 2

    J. M. Moran-Mirabal et al., Biophys. J. 89, 296 (2005).

  3. 3

    C. R. Poulsen et al., Anal. Chem. 77, 667 (2005).

  4. 4

    T. Yang et al., J. Am. Chem. Soc. 125, 4779 (2003).

  5. 5

    H. B. Mao, T. L. Yang, and P. S. Cremer, Cremer, J. Am. Chem. Soc. 124, 4432 (2002).

  6. 6

    S. Majd and M. Mayer, Angew. Chem., Int. Ed. 44, 6697 (2005).

  7. 7

    L. A. Kung et al., Adv. Mater. (Weinheim, Ger.) 12, 731 (2000).

  8. 8

    P. S. Cremer and T. L. Yang, J. Am. Chem. Soc. 121, 8130 (1999).

  9. 9

    J. T. Groves, N. Ulman, and S. G. Boxer, Science 275, 651 (1997).

  10. 10

    T. L. Yang, E. E. Simanek, and P. Cremer, Anal. Chem. 72, 2587 (2000).

  11. 11

    V.Yamazaki et al., BMC Biotechnology5 (2005).

  12. 12

    A. R. Sapuri, M. M. Baksh, and J. T. Groves, Langmuir 19, 1606 (2003).

  13. 13

    J. S. Hovis and S. G. Boxer, Langmuir 17, 3400 (2001).

  14. 14

    L. A. Kung et al., Langmuir 16, 6773 (2000).

  15. 15

    L. K. Tamm, in Optical Microscopy: Emerging Methods and Applications, edited by B. Herman and J. J. Lemasters (Academic, San Diego, 1993), p. 295.

  16. 16

    T. L. Yang et al., Anal. Chem. 73, 165 (2001).

  17. 17

    E. Sackmann, Science 271, 43 (1996).

  18. 18

    C. K. Yee, M. L. Amweg, and A. N. Parikh, J. Am. Chem. Soc. 126, 13962 (2004).

  19. 19

    K. Morigaki et al., Angew. Chem., Int. Ed. 40, 172 (2001).

  20. 20

    B. Ilic and H. G. Craighead, Biomed. Microdevices 2, 317 (2000).

  21. 21

    E. H. Ratzlaff and A. Grinvald, J. Neurosci. Methods 36, 127 (1991).

  22. 22

    S. Sasaki et al., Neuroimage 17, 1240 (2002).

  23. 23

    I. Vanzetta and A. Grinvald, Science 286, 1555 (1999).

  24. 24

    L. Lefkowitz, The Manual of Close-Up Photography (American Photographic Book, New York, 1979).

  25. 25

    J. C. Yarrow et al., BMC Biotechnology 4 (2004).

  26. 26

    M. Bally et al., Surf. Interface Anal. 38, 1442 (2006).

  27. 27

    A. A. Brian and H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 81, 6159 (1984).

  28. 28

    M. J. Hope et al., Biochim. Biophys. Acta 812, 55 (1985).

  29. 29

    H. Bayley and P. S. Cremer, Nature (London) 413, 226 (2001).

  30. 30

    L. Stryer, Annu. Rev. Biochem. 47, 819 (1978).

  31. 31

    E. Li and K. Hristova, Langmuir 20, 9053 (2004).

  32. 32

    R. Parthasarathy et al., J. Phys. Chem. B 108, 649 (2004).

  33. 33

    R. M. Clegg, Methods Enzymol. 211, 353 (1992).

  34. 34

    D. E. Wolf et al., Biochemistry 31, 2865 (1992).

  35. 35

    A. K. Kenworthy and M. Edidin, J. Cell Biol. 142, 69 (1998).

  36. 36

    T. G. Dewey and G. G. Hammes, Biophys. J. 32, 1023 (1980).

  37. 37

    H. B. Mao, T. L. Yang, and P. S. Cremer, Anal. Chem. 74, 379 (2002).

  38. 38

    A. Chilkoti and P. S. Stayton, J. Am. Chem. Soc. 117, 10622 (1995).

  39. 39

    X. H. Zhang and V. T. Moy, Biophys. Chem. 104, 271 (2003).

  40. 40

    E. E. Kim and H. W. Wyckoff, J. Mol. Biol. 218, 449 (1991).

  41. 41

    S. A. Darst et al., Biophys. J. 59, 387 (1991).

  42. 42

    F. J. Schmitt et al., Makromol. Chem., Macromol. Symp. 46, 133 (1991).

  43. 43

    A. Schmidt et al., Biophys. J. 63, 1385 (1992).

  44. 44

    S. A. Hemming et al., J. Mol. Biol. 246, 308 (1995).

  45. 45

    L. S. Jung et al., Sens. Actuators B 54, 137 (1999).

  46. 46

    M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem., Int. Ed. 37, 2755 (1998).

  47. 47

    B. Nag et al., Proc. Natl. Acad. Sci. U.S.A. 90, 1604 (1993).

  48. 48

    M. Rao and S. Mayor, Biochim. Biophys. Acta 1746, 221 (2005).

  49. 49

    M. Dziedzicka-Wasylewska et al., Biochemistry 45, 8751 (2006).

  50. 50

    A. P. Wong and J. T. Groves, Proc. Natl. Acad. Sci. U.S.A. 99, 14147 (2002).

  51. 51

    W. F. DeGrado, H. Gratkowski, and J. D. Lear, Protein Sci. 12, 647 (2003).

Download references

Author information

Correspondence to Paul S. Cremer.

Rights and permissions

Reprints and Permissions

About this article