Skip to main content

Journal for Biophysical Chemistry

Atomic force microscopy and surface plasmon resonance investigation of fibronectin interactions with group B streptococci

Abstract

The interactions of fibronectin (Fn) with group B streptococci (GBS) were investigated using the atomic force microscope (AFM) and surface plasmon resonance (SPR) biosensing. Submonolayer amounts of Fn were immobilized onto the AFM tip by two different methods, using either a sulfosuccinimidyl-4-(N-maleimidomethyl) cycholhexane-1-carboxylate (SMCC) linker or a pyridyldithio poly(ethylene glycol) succinimidylpropionate (NHS-PEG-PDP) linker. Each step of both immobilization methods was characterized using x-ray photoelectron spectroscopy. Time-of-flight secondary ion mass spectrometry experiments indicated both methods produced Fn immobilized in a similar conformation. AFM force-distance curves from live GBS plated onto polystyrene exhibited several types of interactions between the Fn functionalized AFM tip and the surface of capsule-deficient GBS (no interactions, interactions with the cell wall, Fn unfolding, large specific unbinding events, and small specific unbinding events). From analysis of the force-distance curves that exhibited only a single specific unbinding event, the work of adhesion and rupture force for the SMCC immobilized Fn tips (11 131 pN nm and 213 pN) were larger than the corresponding values for the NHS-PEG-PDP immobilized Fn tips (8115 pN nm and 189 pN). The unbinding event occurred at distances approximately 100 nm further from the surface with the NHS-PEG-PDP immobilized Fn tip compared to SMCC immobilized Fn tip. The SPR experiments of soluble Fn with adsorbed serine protease C5a peptidase (Scp), the surface protein on GBS that binds Fn, showed that both low (millimolar) and high binding (nanomolar) affinity interactions were present. However, the low binding affinity interactions dominated the adsorption process and, with increasing Fn solution concentration, the amount of Scp bound to Fn via the high binding affinity interaction decreased. These data confirm that Scp binds only to adsorbed Fn at the Fn concentrations typically present in blood plasma.

References

  1. Nehal I. Abu-Lail and Terri A. Camesano, Langmuir 22, 7296 (2006).

    Article  CAS  Google Scholar 

  2. Seong Soo A. An, Jesus Jimenez-Barbero, Torben E. Peterson, and Miguel Llinas, Biochemistry 31, 9927 (1992).

    Article  CAS  Google Scholar 

  3. Hyeon J. Joh, Karen House-Pompeo, Joseph M. Patti, S. Gurusiddappa, and Magnus Hook, Biochemistry 33, 6086 (1993).

    Article  Google Scholar 

  4. Bernd Kreikemeyer, Sonja Oehmcke, Masanobu Nakata, and Raimund Hoffrogge, J. Biol. Chem. 279, 15850 (2004).

    Article  CAS  Google Scholar 

  5. Joseph M. Patti, Bradley L. Allen, Martin J. McGavin, and Magnus Hook, Annu. Rev. Microbiol. 48, 585 (1994).

    Article  CAS  Google Scholar 

  6. Wendy E. Thomas, Elna Trintchina, Manu Forero, Viola Vogel, and Evgeny V. Sokurenko, Cell 109, 913 (2002).

    Article  CAS  Google Scholar 

  7. B. Brett Finlay and Stanley Falkow, Microbiol. Rev. 53, 210 (1989).

    CAS  Google Scholar 

  8. K. S. Doran and V. Nizet, Mol. Microbiol. 54, 23 (2004).

    Article  CAS  Google Scholar 

  9. Danny Joh, Elisabeth R. Wann, Bernd Kreikemeyer, Pietro Spezaile, and Magnus Hook, Matrix Biol. 18, 211 (1999).

    Article  CAS  Google Scholar 

  10. Karina M. Butler, Carol J. Baker, and Morven S. Edwards, Infect. Immun. 55, 2404 (1987).

    CAS  Google Scholar 

  11. G. S. Tamura and C. E. Rubens, Mol. Microbiol. 15, 581 (1995).

    Article  CAS  Google Scholar 

  12. J. Morehead, I. Coppens, and N. W. Andrews, Infect. Immun. 70, 4571 (2002).

    Article  CAS  Google Scholar 

  13. Glen S. Tamura, Aphakorn Nittayajarn, and Deborah L. Schoentag, Infect. Immun. 70, 2877 (2002).

    Article  CAS  Google Scholar 

  14. Monica M. Farley, Christopher Harvey, Tina Stull, J. David Smith, Anne Schuchat, Jay D. Wenger, and David S. Stephens, N. Engl. J. Med. 328, 1807 (1993).

    Article  CAS  Google Scholar 

  15. B. Westerlund and T. K. Korhonen, Mol. Microbiol. 9, 687 (1993).

    Article  CAS  Google Scholar 

  16. C. Beckmann, J. D. Waggoner, T. O. Harris, G. S. Tamura, and C. E. Rubens, Infect. Immun. 70, 2869 (2002).

    Article  CAS  Google Scholar 

  17. G. S. Tamura, J. R. Hull, M. D. Oberg, and D. G. Castner, Infect. Immun. 74, 5739 (2006).

    Article  CAS  Google Scholar 

  18. Jurgen Engel, Erich Odermatt, and Andreas Engel, J. Mol. Biol. 150, 97 (1981).

    Article  CAS  Google Scholar 

  19. R. Emch F. Zenhausern, M. Jobin, M. Taborelli, and P. Descouts, Ultramicroscopy 42-44, 1155 (1992).

    Article  CAS  Google Scholar 

  20. Kamin J. Johnson Harvey Sage, Gina Briscoe, and Harold P. Erickson, J. Biol. Chem. 274, 15473 (1999).

    Article  CAS  Google Scholar 

  21. Jan H. Hoh, Jason P. Cleveland, Craig B. Prater, Jean-Paul Revel, and Paul K. Hansma, J. Am. Chem. Soc. 114, 4917 (1992).

    Article  CAS  Google Scholar 

  22. G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, Surf. Sci. 189-190, 1 (1987).

    Article  CAS  Google Scholar 

  23. G. K. Binnig, Phys. Scr., T T19A, 53 (1987).

    Article  CAS  Google Scholar 

  24. Vincent Dupres, Franco D. Menozzi, Camille Locht, Brian H. Clare, Nicholas L. Abbott, Stephane Cuenot, Coralie Bompard, Dominique Raze, and Yves F. Dufrene, Nat. Methods 2, 515 (2005).

    Article  CAS  Google Scholar 

  25. Yasser Bustanji, Carla Renata Arcciola, Matteo Conti, Enrico Mandello, Lucio Montanaro, Bruno Samori, Proc. Natl. Acad. Sci. U.S.A. 100, 13292 (2003).

    Article  CAS  Google Scholar 

  26. Haiying Tang Ting Cao, Xuemei Liang, Anfeng Wang, Gregory W. Auner, Steven O. Salley, and K. Y. Simon Ng, Biotechnol. Bioeng. 94, 167 (2006).

    Article  Google Scholar 

  27. Xu Li and Bruce E. Logan, Langmuir 20, 8817 (2004).

    Article  CAS  Google Scholar 

  28. Kathryn A. Whitehead, Dale Rogers, John Colligon, Chris Wright, and Joanna Verran, Colloids Surf., B 51, 44 (2006).

    Article  CAS  Google Scholar 

  29. M. A. Beckmann, S. Venkataraman, M. J. Doktycz, J. P. Nataro, C. J. Sullivan, J. L. Morrell-Falvey, and D. P. Allison, Ultramicroscopy 106, 695 (2006).

    Article  CAS  Google Scholar 

  30. Ahmed Touhami, Bernard Nysten, and Yves F. Dufrene, Langmuir 19, 4539 (2003).

    Article  CAS  Google Scholar 

  31. Francois Ahimou, Frederic A. Denis, Ahmed Touhami, and Yves F. Dufrene, Langmuir 18, 9937 (2002).

    Article  CAS  Google Scholar 

  32. Jiri Homola, Jakub Dostalek, Shengfu Chen, Avraham Rasooly, Shaoyi Jiang, and Sinclair S. Yee, Int. J. Food Microbiol. 75, 61 (2002).

    Article  CAS  Google Scholar 

  33. Buddy D. Ratner, Deborah Leach-Scampavia, and David G. Castner, Biomaterials 14, 148 (1993).

    Article  CAS  Google Scholar 

  34. Jeffrey L. Hutter and John Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    Article  CAS  Google Scholar 

  35. Sandor Kasas, Beat M. Riederer, Stefan Catsicas, Brunero Cappella, and Giovanni Dietler, Rev. Sci. Instrum. 71, 2082 (2000).

    Article  CAS  Google Scholar 

  36. W. Baumgartner, P. Hinterdorfer, and H. Schindler, Ultramicroscopy 85, 85 (2000).

    Article  Google Scholar 

  37. P. Hinterdorfer, K. Schilcher, W. Baumgartner, H. J. Gruber, and H. Schindler, Nanobiology 4, 177 (1998).

    CAS  Google Scholar 

  38. T. Haselgrubler, A. Amerstorfer, and H. J. Gruber, Bioconjugate Chem. 6, 242 (1995).

    Article  CAS  Google Scholar 

  39. F. J. Picard and M. G. Bergeron, Eur. J. Clin. Microbiol. Infect. Dis. 23, 665 (2004).

    Article  CAS  Google Scholar 

  40. C. D. Tidwell, D. G. Castner, S. L. Golledge, B. D. Ratner, K. Meyer, B. Hagenhoff, and A. Benninghoven, Surf. Interface Anal. 31, 724 (2001).

    Article  CAS  Google Scholar 

  41. Nan Xia, Collin J. May, Sally L. McArthur, and David G. Castner, Langmuir 18, 4090 (2002).

    Article  CAS  Google Scholar 

  42. Nan Xia and David G. Castner, J. Biomed. Mater. Res. 67, 179 (2003).

    Article  Google Scholar 

  43. Roger Michel, Stephanie Pasche, Marcus Textor, and David G. Castner, Langmuir 21, 12327 (2005).

    Article  CAS  Google Scholar 

  44. James R. Hull, Glen S. Tamura, and David G. Castner, Biophys. J. (submitted).

  45. V. Franz, S. Loi, H. Muller, E. Bamberg, and H.-J. Butt, Colloids Surf., B 23, 191 (2002).

    Article  CAS  Google Scholar 

  46. Andres F. Oberhauser, Carmelu Badilla-Fernandez, Mariano Carrion-Vazquez, and Julio M. Fernandez, J. Mol. Biol. 319, 433 (2002).

    Article  CAS  Google Scholar 

  47. Matteo Conti, Gabriele Donati, Giuseppe Cianciolo, Sergio Stefoni, and Bruno Samori, J. Biomed. Mater. Res. 61, 370 (2002).

    Article  CAS  Google Scholar 

  48. Pamela Y. Meadows, Jason E. Bemis, and Gilbert C. Walker, Langmuir 19, 9566 (2003).

    Article  CAS  Google Scholar 

  49. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

    Article  CAS  Google Scholar 

  50. Kevin L. Prime and George M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    Article  CAS  Google Scholar 

  51. Erkki Ruoslahti, Annu. Rev. Biochem. 57, 375 (1988).

    Article  CAS  Google Scholar 

  52. P. T. Toy and M. E. Reid, J. Clin. Pathol. 37, 951 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Castner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, J.R., Shannon, J.J., Tamura, G.S. et al. Atomic force microscopy and surface plasmon resonance investigation of fibronectin interactions with group B streptococci. Biointerphases 2, 64–72 (2007). https://doi.org/10.1116/1.2738854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2738854