Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Atomic force microscopy and surface plasmon resonance investigation of fibronectin interactions with group B streptococci

Article metrics

Abstract

The interactions of fibronectin (Fn) with group B streptococci (GBS) were investigated using the atomic force microscope (AFM) and surface plasmon resonance (SPR) biosensing. Submonolayer amounts of Fn were immobilized onto the AFM tip by two different methods, using either a sulfosuccinimidyl-4-(N-maleimidomethyl) cycholhexane-1-carboxylate (SMCC) linker or a pyridyldithio poly(ethylene glycol) succinimidylpropionate (NHS-PEG-PDP) linker. Each step of both immobilization methods was characterized using x-ray photoelectron spectroscopy. Time-of-flight secondary ion mass spectrometry experiments indicated both methods produced Fn immobilized in a similar conformation. AFM force-distance curves from live GBS plated onto polystyrene exhibited several types of interactions between the Fn functionalized AFM tip and the surface of capsule-deficient GBS (no interactions, interactions with the cell wall, Fn unfolding, large specific unbinding events, and small specific unbinding events). From analysis of the force-distance curves that exhibited only a single specific unbinding event, the work of adhesion and rupture force for the SMCC immobilized Fn tips (11 131 pN nm and 213 pN) were larger than the corresponding values for the NHS-PEG-PDP immobilized Fn tips (8115 pN nm and 189 pN). The unbinding event occurred at distances approximately 100 nm further from the surface with the NHS-PEG-PDP immobilized Fn tip compared to SMCC immobilized Fn tip. The SPR experiments of soluble Fn with adsorbed serine protease C5a peptidase (Scp), the surface protein on GBS that binds Fn, showed that both low (millimolar) and high binding (nanomolar) affinity interactions were present. However, the low binding affinity interactions dominated the adsorption process and, with increasing Fn solution concentration, the amount of Scp bound to Fn via the high binding affinity interaction decreased. These data confirm that Scp binds only to adsorbed Fn at the Fn concentrations typically present in blood plasma.

References

  1. 1

    Nehal I. Abu-Lail and Terri A. Camesano, Langmuir 22, 7296 (2006).

  2. 2

    Seong Soo A. An, Jesus Jimenez-Barbero, Torben E. Peterson, and Miguel Llinas, Biochemistry 31, 9927 (1992).

  3. 3

    Hyeon J. Joh, Karen House-Pompeo, Joseph M. Patti, S. Gurusiddappa, and Magnus Hook, Biochemistry 33, 6086 (1993).

  4. 4

    Bernd Kreikemeyer, Sonja Oehmcke, Masanobu Nakata, and Raimund Hoffrogge, J. Biol. Chem. 279, 15850 (2004).

  5. 5

    Joseph M. Patti, Bradley L. Allen, Martin J. McGavin, and Magnus Hook, Annu. Rev. Microbiol. 48, 585 (1994).

  6. 6

    Wendy E. Thomas, Elna Trintchina, Manu Forero, Viola Vogel, and Evgeny V. Sokurenko, Cell 109, 913 (2002).

  7. 7

    B. Brett Finlay and Stanley Falkow, Microbiol. Rev. 53, 210 (1989).

  8. 8

    K. S. Doran and V. Nizet, Mol. Microbiol. 54, 23 (2004).

  9. 9

    Danny Joh, Elisabeth R. Wann, Bernd Kreikemeyer, Pietro Spezaile, and Magnus Hook, Matrix Biol. 18, 211 (1999).

  10. 10

    Karina M. Butler, Carol J. Baker, and Morven S. Edwards, Infect. Immun. 55, 2404 (1987).

  11. 11

    G. S. Tamura and C. E. Rubens, Mol. Microbiol. 15, 581 (1995).

  12. 12

    J. Morehead, I. Coppens, and N. W. Andrews, Infect. Immun. 70, 4571 (2002).

  13. 13

    Glen S. Tamura, Aphakorn Nittayajarn, and Deborah L. Schoentag, Infect. Immun. 70, 2877 (2002).

  14. 14

    Monica M. Farley, Christopher Harvey, Tina Stull, J. David Smith, Anne Schuchat, Jay D. Wenger, and David S. Stephens, N. Engl. J. Med. 328, 1807 (1993).

  15. 15

    B. Westerlund and T. K. Korhonen, Mol. Microbiol. 9, 687 (1993).

  16. 16

    C. Beckmann, J. D. Waggoner, T. O. Harris, G. S. Tamura, and C. E. Rubens, Infect. Immun. 70, 2869 (2002).

  17. 17

    G. S. Tamura, J. R. Hull, M. D. Oberg, and D. G. Castner, Infect. Immun. 74, 5739 (2006).

  18. 18

    Jurgen Engel, Erich Odermatt, and Andreas Engel, J. Mol. Biol. 150, 97 (1981).

  19. 19

    R. Emch F. Zenhausern, M. Jobin, M. Taborelli, and P. Descouts, Ultramicroscopy 42-44, 1155 (1992).

  20. 20

    Kamin J. Johnson Harvey Sage, Gina Briscoe, and Harold P. Erickson, J. Biol. Chem. 274, 15473 (1999).

  21. 21

    Jan H. Hoh, Jason P. Cleveland, Craig B. Prater, Jean-Paul Revel, and Paul K. Hansma, J. Am. Chem. Soc. 114, 4917 (1992).

  22. 22

    G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, Surf. Sci. 189-190, 1 (1987).

  23. 23

    G. K. Binnig, Phys. Scr., T T19A, 53 (1987).

  24. 24

    Vincent Dupres, Franco D. Menozzi, Camille Locht, Brian H. Clare, Nicholas L. Abbott, Stephane Cuenot, Coralie Bompard, Dominique Raze, and Yves F. Dufrene, Nat. Methods 2, 515 (2005).

  25. 25

    Yasser Bustanji, Carla Renata Arcciola, Matteo Conti, Enrico Mandello, Lucio Montanaro, Bruno Samori, Proc. Natl. Acad. Sci. U.S.A. 100, 13292 (2003).

  26. 26

    Haiying Tang Ting Cao, Xuemei Liang, Anfeng Wang, Gregory W. Auner, Steven O. Salley, and K. Y. Simon Ng, Biotechnol. Bioeng. 94, 167 (2006).

  27. 27

    Xu Li and Bruce E. Logan, Langmuir 20, 8817 (2004).

  28. 28

    Kathryn A. Whitehead, Dale Rogers, John Colligon, Chris Wright, and Joanna Verran, Colloids Surf., B 51, 44 (2006).

  29. 29

    M. A. Beckmann, S. Venkataraman, M. J. Doktycz, J. P. Nataro, C. J. Sullivan, J. L. Morrell-Falvey, and D. P. Allison, Ultramicroscopy 106, 695 (2006).

  30. 30

    Ahmed Touhami, Bernard Nysten, and Yves F. Dufrene, Langmuir 19, 4539 (2003).

  31. 31

    Francois Ahimou, Frederic A. Denis, Ahmed Touhami, and Yves F. Dufrene, Langmuir 18, 9937 (2002).

  32. 32

    Jiri Homola, Jakub Dostalek, Shengfu Chen, Avraham Rasooly, Shaoyi Jiang, and Sinclair S. Yee, Int. J. Food Microbiol. 75, 61 (2002).

  33. 33

    Buddy D. Ratner, Deborah Leach-Scampavia, and David G. Castner, Biomaterials 14, 148 (1993).

  34. 34

    Jeffrey L. Hutter and John Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

  35. 35

    Sandor Kasas, Beat M. Riederer, Stefan Catsicas, Brunero Cappella, and Giovanni Dietler, Rev. Sci. Instrum. 71, 2082 (2000).

  36. 36

    W. Baumgartner, P. Hinterdorfer, and H. Schindler, Ultramicroscopy 85, 85 (2000).

  37. 37

    P. Hinterdorfer, K. Schilcher, W. Baumgartner, H. J. Gruber, and H. Schindler, Nanobiology 4, 177 (1998).

  38. 38

    T. Haselgrubler, A. Amerstorfer, and H. J. Gruber, Bioconjugate Chem. 6, 242 (1995).

  39. 39

    F. J. Picard and M. G. Bergeron, Eur. J. Clin. Microbiol. Infect. Dis. 23, 665 (2004).

  40. 40

    C. D. Tidwell, D. G. Castner, S. L. Golledge, B. D. Ratner, K. Meyer, B. Hagenhoff, and A. Benninghoven, Surf. Interface Anal. 31, 724 (2001).

  41. 41

    Nan Xia, Collin J. May, Sally L. McArthur, and David G. Castner, Langmuir 18, 4090 (2002).

  42. 42

    Nan Xia and David G. Castner, J. Biomed. Mater. Res. 67, 179 (2003).

  43. 43

    Roger Michel, Stephanie Pasche, Marcus Textor, and David G. Castner, Langmuir 21, 12327 (2005).

  44. 44

    James R. Hull, Glen S. Tamura, and David G. Castner, Biophys. J. (submitted).

  45. 45

    V. Franz, S. Loi, H. Muller, E. Bamberg, and H.-J. Butt, Colloids Surf., B 23, 191 (2002).

  46. 46

    Andres F. Oberhauser, Carmelu Badilla-Fernandez, Mariano Carrion-Vazquez, and Julio M. Fernandez, J. Mol. Biol. 319, 433 (2002).

  47. 47

    Matteo Conti, Gabriele Donati, Giuseppe Cianciolo, Sergio Stefoni, and Bruno Samori, J. Biomed. Mater. Res. 61, 370 (2002).

  48. 48

    Pamela Y. Meadows, Jason E. Bemis, and Gilbert C. Walker, Langmuir 19, 9566 (2003).

  49. 49

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, J. Phys. Chem. B 102, 426 (1998).

  50. 50

    Kevin L. Prime and George M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

  51. 51

    Erkki Ruoslahti, Annu. Rev. Biochem. 57, 375 (1988).

  52. 52

    P. T. Toy and M. E. Reid, J. Clin. Pathol. 37, 951 (1984).

Download references

Author information

Correspondence to David G. Castner.

Rights and permissions

Reprints and Permissions

About this article