Skip to main content


Journal for Biophysical Chemistry

Biointerphases Cover Image

Microfluidic patterning of alginate hydrogels

Article metrics


In this article the authors present techniques which allow the microfluidic design of alginate microgels with layer composition on a chip. The hydrogel is created by combining two laminar flows of the gel precursor solutions—a calcium solution and an alginate solution—in a microchannel. The alginate solution is loaded with particles and by employing a certain fluid handling protocol involving several alginate solutions with different types of particles, a gel bar composed of many layers, each layer filled with a certain particle type, is formed. This method allows to produce defined lamellae of gel with extraordinarily small size and large aspect ratios. The minimal width attainable for a single layer by this technique is determined by the experimental conditions and for the conditions of the present article layer widths on the order of 10 μm have been realized at a gel thickness of 100 μm. Another method described is based on the finding that the degree of particle incorporation in the gel varies with the particle speed in the alginate flow. Altering the alginate flow rate thus allows to form a gel bar with an inner structure due to varying particle density. The authors believe that alginate gel patterning technology, which relies on easily available equipment and involves gentle particle immobilization conditions, could offer a novel approach toward the engineering of artificial tissues on the micrometer range or to cell micropatterning for analytical purposes.


  1. 1

    G. M. Eichenbaum, P. F. Kiser, S. A. Simon, and D. Needham, Macromolecules 31, 5084 (1998).

  2. 2

    M. L. Kraft and J. S. Moore, J. Am. Chem. Soc. 123, 12921 (2001).

  3. 3

    G. Gerlach, M. Guenther, J. Sorber, G. Suchaneck, K.-F. Arndt, and A. Richter, Sens. Actuators B 111-112, 555 (2005).

  4. 4

    M. J. Bassetti, A. N. Chatterjee, N. R. Aluru, and D. J. Beebe, J. Microelectromech. Syst. 14, 1198 (2005).

  5. 5

    M. E. Harmon, D. Kuckling, and C. W. Frank, Langmuir 19, 10660 (2003).

  6. 6

    S. Nayak and L. A. Lyon, Chem. Mater. 16, 2623 (2004).

  7. 7

    E. A. Moschou, S. F. Peteu, L. G. Bachas, M. J. Madou, and S. Daunert, Chem. Mater. 16, 2499 (2004).

  8. 8

    D. J. Beebe, J. S. Moore, Q. Yu, R. H. Liu, M. L. Kraft, B.-H. Jo, and C. Devadoss, Proc. Natl. Acad. Sci. U.S.A. 97, 13488 (2005).

  9. 9

    M. E. Harmon, M. Tang, and C. W. Frank, Polymer 44, 4547 (2003).

  10. 10

    H. Suzuki, T. Tokuda, and K. Kobayashi, Sens. Actuators B 83, 53 (2002).

  11. 11

    S. Song, A. K. Singh, T. J. Shepodd, and B. J. Kirby, Anal. Chem. 76, 2367 (2004).

  12. 12

    A. T. Woolley and R. A. Mathie, Anal. Chem. 67, 3676 (1995).

  13. 13

    V. A. Dowling, J. A. M. Charles, E. Nwakpuda, and L. B. McGown, Anal. Chem. 76, 4558 (2004).

  14. 14

    R. Hagedorn, Th. Schnelle, T. Müller, I. Scholz, K. Lange, and M. Reh, Electrophoresis 26, 2495 (2005).

  15. 15

    E. Herr and A. K. Singh, Anal. Chem. 76, 4727 (2004).

  16. 16

    R. Dhopeshwarkar, L. Sun, and R. M. Crooks, Lab Chip 5, 1148 (2005).

  17. 17

    S. Song, A. K. Singh, and B. J. Kirby, Anal. Chem. 76, 4589 (2004).

  18. 18

    G. H. Seong, W. Zhan, and R. M. Crooks, Anal. Chem. 74, 3372 (2002).

  19. 19

    W.-G. Koh and M. Pishko, Sens. Actuators B 106, 335 (2005).

  20. 20

    A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, Langmuir 17, 5440 (2001).

  21. 21

    J. Heo and R. M. Crooks, Anal. Chem. 77, 6843 (2005).

  22. 22

    A. C. Jen, M. C. Wake, and A. G. Mikos, Biotechnol. Bioeng. 50, 357 (1996).

  23. 23

    J. L. Drury and D. J. Mooney, Biomaterials 24, 4337 (2003).

  24. 24

    M. R. Dusseiller, M. L. Smith, V. Vogel, and M. Textor, BioInterphases 1, P1 (2006).

  25. 25

    M. S. Kim, J. H. Yeon, and J.-K. Park, Biomed. Microdevices 9, 25 (2007).

  26. 26

    D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, Lab Chip 5, 111 (2005).

  27. 27

    J. A. Burdick, A. Khademhosseini, and R. Langer, Langmuir 20, 5153 (2004).

  28. 28

    N. Zaari, P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong, Adv. Mater. (Weinheim, Ger.) 16, 2133 (2004).

  29. 29

    J. C. Zguris, L. J. Itl, W. G. Koh, and M. V. Pishko, Langmuir 21, 4168 (2005).

  30. 30

    W. Tan and T. A. Desai, Biomed. Microdevices 5, 235 (2003).

  31. 31

    T. Braschler, R. Johann, M. Heule, L. Metref, and Ph. Renaud, Astron. Tsirk. 5, 553 (2005).

  32. 32

    G. Ladam, P. Schaaf, F. J. G. Cuisinier, G. Decher, and J.-C. Voegel, Langmuir 17, 878 (2001).

  33. 33

    H. Zhu, J. Ji, and J. Shen, Biomaterials 25, 109 (2004).

  34. 34

    S. Schneider, P. J. Feilen, V. Slotty, D. Kampfner, S. Preuss, S. Berger, J. Beyer, and R. Pommersheim, Biomaterials 22, 1961 (2001).

  35. 35

    J. Crank, The Mathematics of Diffusion, 1st ed. (Oxford University Press, London, 1956), pp. 45–48.

  36. 36

    W. van Beinum, J. C. L. Meeussen, and W. van Riemsdijk, Environ. Sci. Technol. 34, 4902 (2000).

  37. 37

    V. R. Tirumala, R. Divan, D. C. Mancini, and G. T. Caneba, Microsyst. Technol. 11, 347 (2005).

  38. 38

    R. M. Johann, Anal. Bioanal. Chem. 385, 408 (2006).

  39. 39

    See EPAPS Document No. E-BJIOBN-2-004702 for videos on irregular gel shape caused by weak gel adhesion. The videos may also be reached via the EPAPS homepage ( or from in the directory /epaps/. See the EPAPS homepage for more information.

Download references

Author information

Correspondence to Robert M. Johann or Philippe Renaud.

Rights and permissions

Reprints and Permissions

About this article