Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Microfluidic patterning of alginate hydrogels

Abstract

In this article the authors present techniques which allow the microfluidic design of alginate microgels with layer composition on a chip. The hydrogel is created by combining two laminar flows of the gel precursor solutions—a calcium solution and an alginate solution—in a microchannel. The alginate solution is loaded with particles and by employing a certain fluid handling protocol involving several alginate solutions with different types of particles, a gel bar composed of many layers, each layer filled with a certain particle type, is formed. This method allows to produce defined lamellae of gel with extraordinarily small size and large aspect ratios. The minimal width attainable for a single layer by this technique is determined by the experimental conditions and for the conditions of the present article layer widths on the order of 10 μm have been realized at a gel thickness of 100 μm. Another method described is based on the finding that the degree of particle incorporation in the gel varies with the particle speed in the alginate flow. Altering the alginate flow rate thus allows to form a gel bar with an inner structure due to varying particle density. The authors believe that alginate gel patterning technology, which relies on easily available equipment and involves gentle particle immobilization conditions, could offer a novel approach toward the engineering of artificial tissues on the micrometer range or to cell micropatterning for analytical purposes.

References

  1. 1

    G. M. Eichenbaum, P. F. Kiser, S. A. Simon, and D. Needham, Macromolecules 31, 5084 (1998).

    Article  CAS  Google Scholar 

  2. 2

    M. L. Kraft and J. S. Moore, J. Am. Chem. Soc. 123, 12921 (2001).

    Article  CAS  Google Scholar 

  3. 3

    G. Gerlach, M. Guenther, J. Sorber, G. Suchaneck, K.-F. Arndt, and A. Richter, Sens. Actuators B 111-112, 555 (2005).

    Article  Google Scholar 

  4. 4

    M. J. Bassetti, A. N. Chatterjee, N. R. Aluru, and D. J. Beebe, J. Microelectromech. Syst. 14, 1198 (2005).

    Article  Google Scholar 

  5. 5

    M. E. Harmon, D. Kuckling, and C. W. Frank, Langmuir 19, 10660 (2003).

    Article  CAS  Google Scholar 

  6. 6

    S. Nayak and L. A. Lyon, Chem. Mater. 16, 2623 (2004).

    Article  CAS  Google Scholar 

  7. 7

    E. A. Moschou, S. F. Peteu, L. G. Bachas, M. J. Madou, and S. Daunert, Chem. Mater. 16, 2499 (2004).

    Article  CAS  Google Scholar 

  8. 8

    D. J. Beebe, J. S. Moore, Q. Yu, R. H. Liu, M. L. Kraft, B.-H. Jo, and C. Devadoss, Proc. Natl. Acad. Sci. U.S.A. 97, 13488 (2005).

    Article  Google Scholar 

  9. 9

    M. E. Harmon, M. Tang, and C. W. Frank, Polymer 44, 4547 (2003).

    Article  CAS  Google Scholar 

  10. 10

    H. Suzuki, T. Tokuda, and K. Kobayashi, Sens. Actuators B 83, 53 (2002).

    Article  Google Scholar 

  11. 11

    S. Song, A. K. Singh, T. J. Shepodd, and B. J. Kirby, Anal. Chem. 76, 2367 (2004).

    Article  CAS  Google Scholar 

  12. 12

    A. T. Woolley and R. A. Mathie, Anal. Chem. 67, 3676 (1995).

    Article  CAS  Google Scholar 

  13. 13

    V. A. Dowling, J. A. M. Charles, E. Nwakpuda, and L. B. McGown, Anal. Chem. 76, 4558 (2004).

    Article  CAS  Google Scholar 

  14. 14

    R. Hagedorn, Th. Schnelle, T. Müller, I. Scholz, K. Lange, and M. Reh, Electrophoresis 26, 2495 (2005).

    Article  CAS  Google Scholar 

  15. 15

    E. Herr and A. K. Singh, Anal. Chem. 76, 4727 (2004).

    Article  CAS  Google Scholar 

  16. 16

    R. Dhopeshwarkar, L. Sun, and R. M. Crooks, Lab Chip 5, 1148 (2005).

    Article  CAS  Google Scholar 

  17. 17

    S. Song, A. K. Singh, and B. J. Kirby, Anal. Chem. 76, 4589 (2004).

    Article  CAS  Google Scholar 

  18. 18

    G. H. Seong, W. Zhan, and R. M. Crooks, Anal. Chem. 74, 3372 (2002).

    Article  CAS  Google Scholar 

  19. 19

    W.-G. Koh and M. Pishko, Sens. Actuators B 106, 335 (2005).

    Article  Google Scholar 

  20. 20

    A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, Langmuir 17, 5440 (2001).

    Article  CAS  Google Scholar 

  21. 21

    J. Heo and R. M. Crooks, Anal. Chem. 77, 6843 (2005).

    Article  CAS  Google Scholar 

  22. 22

    A. C. Jen, M. C. Wake, and A. G. Mikos, Biotechnol. Bioeng. 50, 357 (1996).

    Article  CAS  Google Scholar 

  23. 23

    J. L. Drury and D. J. Mooney, Biomaterials 24, 4337 (2003).

    Article  CAS  Google Scholar 

  24. 24

    M. R. Dusseiller, M. L. Smith, V. Vogel, and M. Textor, BioInterphases 1, P1 (2006).

    Article  CAS  Google Scholar 

  25. 25

    M. S. Kim, J. H. Yeon, and J.-K. Park, Biomed. Microdevices 9, 25 (2007).

    Article  CAS  Google Scholar 

  26. 26

    D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, Lab Chip 5, 111 (2005).

    Article  CAS  Google Scholar 

  27. 27

    J. A. Burdick, A. Khademhosseini, and R. Langer, Langmuir 20, 5153 (2004).

    Article  CAS  Google Scholar 

  28. 28

    N. Zaari, P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong, Adv. Mater. (Weinheim, Ger.) 16, 2133 (2004).

    Article  CAS  Google Scholar 

  29. 29

    J. C. Zguris, L. J. Itl, W. G. Koh, and M. V. Pishko, Langmuir 21, 4168 (2005).

    Article  CAS  Google Scholar 

  30. 30

    W. Tan and T. A. Desai, Biomed. Microdevices 5, 235 (2003).

    Article  CAS  Google Scholar 

  31. 31

    T. Braschler, R. Johann, M. Heule, L. Metref, and Ph. Renaud, Astron. Tsirk. 5, 553 (2005).

    CAS  Google Scholar 

  32. 32

    G. Ladam, P. Schaaf, F. J. G. Cuisinier, G. Decher, and J.-C. Voegel, Langmuir 17, 878 (2001).

    Article  CAS  Google Scholar 

  33. 33

    H. Zhu, J. Ji, and J. Shen, Biomaterials 25, 109 (2004).

    Article  CAS  Google Scholar 

  34. 34

    S. Schneider, P. J. Feilen, V. Slotty, D. Kampfner, S. Preuss, S. Berger, J. Beyer, and R. Pommersheim, Biomaterials 22, 1961 (2001).

    Article  CAS  Google Scholar 

  35. 35

    J. Crank, The Mathematics of Diffusion, 1st ed. (Oxford University Press, London, 1956), pp. 45–48.

    Google Scholar 

  36. 36

    W. van Beinum, J. C. L. Meeussen, and W. van Riemsdijk, Environ. Sci. Technol. 34, 4902 (2000).

    Article  Google Scholar 

  37. 37

    V. R. Tirumala, R. Divan, D. C. Mancini, and G. T. Caneba, Microsyst. Technol. 11, 347 (2005).

    Article  CAS  Google Scholar 

  38. 38

    R. M. Johann, Anal. Bioanal. Chem. 385, 408 (2006).

    Article  CAS  Google Scholar 

  39. 39

    See EPAPS Document No. E-BJIOBN-2-004702 for videos on irregular gel shape caused by weak gel adhesion. The videos may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Robert M. Johann or Philippe Renaud.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johann, R.M., Renaud, P. Microfluidic patterning of alginate hydrogels. Biointerphases 2, 73–79 (2007). https://doi.org/10.1116/1.2746873

Download citation