Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Nanoscale eluting coatings based on alginate/chitosan hydrogels

Article metrics

Abstract

The localized availability of bioactive biomolecules directly at the implant/tissue interface presents a promising strategy for improved wound healing and thus biointegration. Bioactive molecules that cannot be incorporated into the bulk material of a device may be delivered from a compatible surface coating, while the reservoir capacity of thin surface coatings is limited, they offer localized delivery over the first few critical hours or days of wound healing. In this study an alginate/chitosan hydrogel has been utilized as the basis for nanoscale eluting coatings to provide a hydrophilic yet water insoluble surface delivery system. The release characteristics of these hydrogel coatings were measured by employing the model molecules-fluorescein isothiocyanate dextran [FD; molecular weights (MWs) 4, 70, and 2000 kDa], fluorescein isothiocyanate albumin, and rhodamine. Scanning electron microscopy and atomic force microscopy were used to study the morphology of the hydrogel coatings on model substrates, and ellipsometry was employed for measuring the coating thickness. On silicon wafers, the coatings were of good uniformity and conformal, with a thickness of ≈ 120 nm and a rms roughness of 3.0 nm. A model porous substrate, paper, which afforded deep pore penetration of the hydrogel, was used to mimic hydroxyapatite. The release of FD was observed to be dependent on the MW, the release medium, charge, and surface roughness. Sustained release was recorded for FD 70 and FD 2000 with yields of about 90% and 75%, respectively, into simulated body fluid within 26 days. Concurrent elution of different molecules from one hydrogel coating was demonstrated. The observed elution profiles were fitted to release kinetics such as the Korsmeyer-Peppas model or first order release.

References

  1. 1

    B. D. Ratner, J. Mol. Recognit. 9, 617 (1996).

  2. 2

    D. A. Puleo and A. Nanci, Biomaterials 20, 2311 (1999).

  3. 3

    M. Morra and C. Cassinelli, Plasmas Polym. 7, 89 (2002).

  4. 4

    H. F. Hildebrand, N. Blanchemain, G. Mayer, Y. M. Zhang, O. Melnyk, M. Morcellet, and B. Martel, Key Eng. Mater. 47, 288–289 (2005).

  5. 5

    B. Wildemann, P. Bamdad, C. Holmer, N. P. Haas, M. Raschke, and G. Schmidmaier, Bone (N.Y.) 34, 862 (2004).

  6. 6

    G. Schmidmaier et al., Bone (N.Y.) 28, 341 (2001).

  7. 7

    G. Schmidmaier, B. Wildemann, A. Stemberger, N. P. Haas, and M. Raschke, J. Biomed. Mater. Res., Part B: Appl. Biomater. 58, 449 (2001).

  8. 8

    A. T. Raiche and D. A. Puleo, Biomaterials 25, 677 (2004).

  9. 9

    J. S. Price, A. F. Tencer, D. M. Arm, and G. A. Bohach, J. Biomed. Mater. Res. 30, 281 (1996).

  10. 10

    H. von Recum, T. Okano, and S. Wan Kim, J. Controlled Release 55, 121 (1998).

  11. 11

    J. Stamler, J.Loscalzo, and J. D.Folts, U.S. Patent No. 6255277.

  12. 12

    M. A. Lodhi, G. W. Opperman, J. V. Wall, and A. B. Anderson, NSTI Nanotechnology Conference and Trade Show, Anaheim, CA (Nano Science and Technology Institute, Cambridge, 2005), pp. 389–392.

  13. 13

    B. Lagerqvist, S. K. James, U. Stenestrand, J. Lindback, T. Nilsson, and L. Wallentin, N. Engl. J. Med. 356, 1009 (2007).

  14. 14

    I. Menown, R. Lowe, and I. Penn, Journal of Invasive Cardiology1042–3931 17, 222 (2005).

  15. 15

    A. L. Lewis, S. L. Willis, S. A. Small, S. R. Hunt, V. O’Byrne, and P. W. Stratford, Biomed. Mater. Eng. 14, 355 (2004).

  16. 16

    K. Al-Lamme and D. Cook, Medical device technology1048-6690 1, 12 (2003).

  17. 17

    F. Philippe, A. Dibie, F. Larrazet, T. Meziane, T. Folliguet, and E. Laborde, Ann. Cardiol. Angeiol. 54, 201 (2005).

  18. 18

    E. Grube and L. Buellesfeld, American Journal of Cardiovascular Drugs 1175-3277 4, 355 (2004).

  19. 19

    R. E. Richard, 230th ACS National Meeting, Washington, DC (American Chemical Society, Washington, DC, 2005), pp. POLY-696.

  20. 20

    C. A. Kavanagh, Y. A. Rochev, W. M. Gallagher, K. A. Dawson, and A. K. Keenan, Pharmacol. Ther. 102, 1 (2004).

  21. 21

    Y. K. Joung, H. I. Kim, S. S. Kim, K. H. Chung, Y. S. Jang, and K. D. Park, J. Controlled Release 92, 83 (2003).

  22. 22

    E. Grube and L. Buellesfeld, Herz 29, 162 (2004).

  23. 23

    Y. Nakayama, J.-Y. Kim, S. Nishi, H. Ueno, and T. Matsuda, J. Biomed. Mater. Res. 57, 559 (2001).

  24. 24

    Y. Huang, X. Liu, L. Wang, S. Li, E. Verbeken, and I. de Scheerder, Coron. Artery Dis. 14, 401 (2003).

  25. 25

    Y. Huang, L. Wang, I. Verweire, B. Qiang, X. Liu, E. Verbeken, E. Schacht, and I. de Scheerder, Journal of Invasive Cardiology 1042-3931 14, 505 (2002).

  26. 26

    W. J. van der Giessen, A. M. Lincoff, R. S. Schwartz, H. M. M. van Beusekom, and P. W. Serruys, Circulation 94, 1690 (1996).

  27. 27

    S. V. Ranade, K. M. Miller, R. E. Richard, A. K. Chan, M. J. Allen, and M. N. Helmus, J. Biomed. Mater. Res. 71A, 625 (2004).

  28. 28

    P. W. Serruys et al., J. Am. Coll. Cardiol. 46, 253 (2005).

  29. 29

    A. L. Lewis, L. A. Tolhurst, and P. W. Stratford, Biomaterials 23, 1697 (2002).

  30. 30

    K. Al-Lamee, Medical Device Technology1048-6690 1, 12 (2005).

  31. 31

    N. A. Peppas, Preface (CRC, Boca Raton, FL, 1986), p. 18.

  32. 32

    A. S. Hoffman, Adv. Drug Delivery Rev. 43, 3 (2002).

  33. 33

    K. C. Wood, H. F. Chuang, R. D. Battern, D. M. Lynn, and P. T. Hammond, Proc. Natl. Acad. Sci. U.S.A. 103, 10207 (2006).

  34. 34

    A. Haug, B. Larsen, and O. Smidsrød, Acta Chem. Scand. (1947-1973) 21, 691 (1967).

  35. 35

    T. J. Smith, Pharm. Technol. 18, 26 (1994).

  36. 36

    J. L. Drury and D. Mooney, Biomaterials 24, 4337 (2003).

  37. 37

    H. J. Kong, E. Wong, and D. Mooney, Macromolecules 36, 4582 (2003).

  38. 38

    W. R. Gombotz and S. F. Wee, Adv. Drug Delivery Rev. 31, 267 (1998).

  39. 39

    J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials 20, 45 (1999).

  40. 40

    L. Wang, R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, and J. E. Barralet, Biomaterials 24, 3475 (2003).

  41. 41

    Y. Ueyama, K. Ishikawa, T. Mano, T. Koyama, H. Nagatsuka, K. Suzuki, and K. Ryoke, Biomaterials 23, 2027 (2002).

  42. 42

    K.Ishikawa, K. Suzuki, Y. Kamiyama, and T. Matsumura, JP 11253547.

  43. 43

    S. Tokura and H. Tamura, Advances in Chitin Science 6, 57 (2002).

  44. 44

    H. Tamura, Y. Tsuruta, and S. Tokura, Mater. Sci. Eng., C C20, 143 (2002).

  45. 45

    H.Omidian, Y.Qiu, S.Yang, D.Kim, H. Park, and K. Park, WO 2003089506.

  46. 46

    X. L. Yan, E. Khor, and L. Y. Lim, J. Biomed. Mater. Res. 58, 358 (2001).

  47. 47

    C. Tapia, Z. Escobar, E. Costa, J. Sapag-Hagar, F. Valenzuela, C. Basualto, M. Nella Gai, and M. Yazdani-Pedram, Eur. J. Pharm. Biopharm. 57, 65 (2004).

  48. 48

    L. You, Y. Zou, Q. Jing, and L. Hu, Shenyang Yaoke Daxue Xuebao1006-2858 19, 168 (2002).

  49. 49

    L. S. Liu, S. Q. Liu, S. Y. Ng, M. Froix, T. Ohno, and J. Heller, J. Controlled Release 43, 65 (1997).

  50. 50

    L. Wang, E. Khor, and L.-Y. Lim, J. Pharm. Sci. 90, 1134 (2001).

  51. 51

    A. Cardenas, W. Arguelles-Monal, F. M. Goycoolea, I. Higuera-Ciapara, and C. Penich, Macromol. Biosci. 3, 535 (2003).

  52. 52

    F. A. Simsek-Ege, G. M. Bond, and J. Stringer, J. Biomater. Sci., Polym. Ed. 13, 1175 (2002).

  53. 53

    L. Wang, E. Khor, A. Wee, and L. Y. Lim, J. Biomed. Mater. Res. 63, 610 (2002).

  54. 54

    D.Seliktar and R. Beyar, WO 2005055800.

  55. 55

    F. A. Simsek-Ege, G. M. Bond, and J. Stringer, J. Appl. Polym. Sci. 88, 346 (2003).

  56. 56

    T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Mater. Res. Soc. Symp. Proc. 734, 333 (2002).

  57. 57

    X. Wang and H. G. Spencer, J. Appl. Polym. Sci. 61, 827 (1996).

  58. 58

    T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Biomaterials 24, 2889 (2003).

  59. 59

    A. Bagno, M. Genovese, A. Luchini, M. Dettin, M. T. Conconi, A. M. Menti, P. P. Parnigotto, and C. Di Bello, Biomaterials 25, 2437 (2004).

  60. 60

    J. R. Adams and N. M. Bashara, Surf. Sci. 47, 655 (1975).

  61. 61

    J. Voros, Biophys. J. 87, 553 (2004).

  62. 62

    LEAD Technologies, SPPS@Base system, LEAD Technologies Inc. (2002).

  63. 63

    SPSS, Regression (2004).

  64. 64

    P. Peng, Ph.D. thesis, University of South Australia, 2005.

  65. 65

    S. J. Kim, K. J. Lee, and S. I. Kim, J. Appl. Polym. Sci. 93, 1097 (2004).

  66. 66

    N. A. Peppas, Pharm. Acta Helv. 60, 110 (1985).

  67. 67

    R. Langer and N. Peppas, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C23, 61 (1983).

  68. 68

    R. W. Korsmeyer and N. A. Peppas, Controlled Release Delivery Systems (Dekker, New York, 1983), pp. 77–90.

  69. 69

    R. W. Korsmeyer, R. Gurny, E. M. Doelker, P. Buri, and N. A. Peppas, Int. J. Pharm. 15, 25 (1983).

  70. 70

    C. K. Yeom and K. H. Lee, J. Appl. Polym. Sci. 67, 949 (1998).

  71. 71

    T. Hatakeyama, K. Nakamura, and H. Hatakeyama, Kobunshi Rombunshu 53, 795 (1996).

  72. 72

    H. L. Frisch, Polym. Eng. Sci. 20, 2 (1980).

  73. 73

    S. F. Sun, Physical Chemistry of Macromolecules (Wiley, New York, 1994), pp. 236–254.

  74. 74

    P. Costa and J. M. S. Lobo, Eur. J. Pharm. Sci. 13, 123 (2001).

Download references

Author information

Correspondence to Ping Peng.

Rights and permissions

Reprints and Permissions

About this article