Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Nanoscale eluting coatings based on alginate/chitosan hydrogels


The localized availability of bioactive biomolecules directly at the implant/tissue interface presents a promising strategy for improved wound healing and thus biointegration. Bioactive molecules that cannot be incorporated into the bulk material of a device may be delivered from a compatible surface coating, while the reservoir capacity of thin surface coatings is limited, they offer localized delivery over the first few critical hours or days of wound healing. In this study an alginate/chitosan hydrogel has been utilized as the basis for nanoscale eluting coatings to provide a hydrophilic yet water insoluble surface delivery system. The release characteristics of these hydrogel coatings were measured by employing the model molecules-fluorescein isothiocyanate dextran [FD; molecular weights (MWs) 4, 70, and 2000 kDa], fluorescein isothiocyanate albumin, and rhodamine. Scanning electron microscopy and atomic force microscopy were used to study the morphology of the hydrogel coatings on model substrates, and ellipsometry was employed for measuring the coating thickness. On silicon wafers, the coatings were of good uniformity and conformal, with a thickness of ≈ 120 nm and a rms roughness of 3.0 nm. A model porous substrate, paper, which afforded deep pore penetration of the hydrogel, was used to mimic hydroxyapatite. The release of FD was observed to be dependent on the MW, the release medium, charge, and surface roughness. Sustained release was recorded for FD 70 and FD 2000 with yields of about 90% and 75%, respectively, into simulated body fluid within 26 days. Concurrent elution of different molecules from one hydrogel coating was demonstrated. The observed elution profiles were fitted to release kinetics such as the Korsmeyer-Peppas model or first order release.


  1. 1

    B. D. Ratner, J. Mol. Recognit. 9, 617 (1996).

    Article  CAS  Google Scholar 

  2. 2

    D. A. Puleo and A. Nanci, Biomaterials 20, 2311 (1999).

    Article  CAS  Google Scholar 

  3. 3

    M. Morra and C. Cassinelli, Plasmas Polym. 7, 89 (2002).

    Article  CAS  Google Scholar 

  4. 4

    H. F. Hildebrand, N. Blanchemain, G. Mayer, Y. M. Zhang, O. Melnyk, M. Morcellet, and B. Martel, Key Eng. Mater. 47, 288–289 (2005).

    Google Scholar 

  5. 5

    B. Wildemann, P. Bamdad, C. Holmer, N. P. Haas, M. Raschke, and G. Schmidmaier, Bone (N.Y.) 34, 862 (2004).

    Article  CAS  Google Scholar 

  6. 6

    G. Schmidmaier et al., Bone (N.Y.) 28, 341 (2001).

    Article  CAS  Google Scholar 

  7. 7

    G. Schmidmaier, B. Wildemann, A. Stemberger, N. P. Haas, and M. Raschke, J. Biomed. Mater. Res., Part B: Appl. Biomater. 58, 449 (2001).

    Article  CAS  Google Scholar 

  8. 8

    A. T. Raiche and D. A. Puleo, Biomaterials 25, 677 (2004).

    Article  CAS  Google Scholar 

  9. 9

    J. S. Price, A. F. Tencer, D. M. Arm, and G. A. Bohach, J. Biomed. Mater. Res. 30, 281 (1996).

    Article  CAS  Google Scholar 

  10. 10

    H. von Recum, T. Okano, and S. Wan Kim, J. Controlled Release 55, 121 (1998).

    Article  Google Scholar 

  11. 11

    J. Stamler, J.Loscalzo, and J. D.Folts, U.S. Patent No. 6255277.

  12. 12

    M. A. Lodhi, G. W. Opperman, J. V. Wall, and A. B. Anderson, NSTI Nanotechnology Conference and Trade Show, Anaheim, CA (Nano Science and Technology Institute, Cambridge, 2005), pp. 389–392.

    Google Scholar 

  13. 13

    B. Lagerqvist, S. K. James, U. Stenestrand, J. Lindback, T. Nilsson, and L. Wallentin, N. Engl. J. Med. 356, 1009 (2007).

    Article  CAS  Google Scholar 

  14. 14

    I. Menown, R. Lowe, and I. Penn, Journal of Invasive Cardiology1042–3931 17, 222 (2005).

    Google Scholar 

  15. 15

    A. L. Lewis, S. L. Willis, S. A. Small, S. R. Hunt, V. O’Byrne, and P. W. Stratford, Biomed. Mater. Eng. 14, 355 (2004).

    Google Scholar 

  16. 16

    K. Al-Lamme and D. Cook, Medical device technology1048-6690 1, 12 (2003).

    Google Scholar 

  17. 17

    F. Philippe, A. Dibie, F. Larrazet, T. Meziane, T. Folliguet, and E. Laborde, Ann. Cardiol. Angeiol. 54, 201 (2005).

    Article  CAS  Google Scholar 

  18. 18

    E. Grube and L. Buellesfeld, American Journal of Cardiovascular Drugs 1175-3277 4, 355 (2004).

    Article  CAS  Google Scholar 

  19. 19

    R. E. Richard, 230th ACS National Meeting, Washington, DC (American Chemical Society, Washington, DC, 2005), pp. POLY-696.

    Google Scholar 

  20. 20

    C. A. Kavanagh, Y. A. Rochev, W. M. Gallagher, K. A. Dawson, and A. K. Keenan, Pharmacol. Ther. 102, 1 (2004).

    Article  CAS  Google Scholar 

  21. 21

    Y. K. Joung, H. I. Kim, S. S. Kim, K. H. Chung, Y. S. Jang, and K. D. Park, J. Controlled Release 92, 83 (2003).

    Article  CAS  Google Scholar 

  22. 22

    E. Grube and L. Buellesfeld, Herz 29, 162 (2004).

    Article  Google Scholar 

  23. 23

    Y. Nakayama, J.-Y. Kim, S. Nishi, H. Ueno, and T. Matsuda, J. Biomed. Mater. Res. 57, 559 (2001).

    Article  CAS  Google Scholar 

  24. 24

    Y. Huang, X. Liu, L. Wang, S. Li, E. Verbeken, and I. de Scheerder, Coron. Artery Dis. 14, 401 (2003).

    Google Scholar 

  25. 25

    Y. Huang, L. Wang, I. Verweire, B. Qiang, X. Liu, E. Verbeken, E. Schacht, and I. de Scheerder, Journal of Invasive Cardiology 1042-3931 14, 505 (2002).

    Google Scholar 

  26. 26

    W. J. van der Giessen, A. M. Lincoff, R. S. Schwartz, H. M. M. van Beusekom, and P. W. Serruys, Circulation 94, 1690 (1996).

    Google Scholar 

  27. 27

    S. V. Ranade, K. M. Miller, R. E. Richard, A. K. Chan, M. J. Allen, and M. N. Helmus, J. Biomed. Mater. Res. 71A, 625 (2004).

    Article  CAS  Google Scholar 

  28. 28

    P. W. Serruys et al., J. Am. Coll. Cardiol. 46, 253 (2005).

    Article  CAS  Google Scholar 

  29. 29

    A. L. Lewis, L. A. Tolhurst, and P. W. Stratford, Biomaterials 23, 1697 (2002).

    Article  CAS  Google Scholar 

  30. 30

    K. Al-Lamee, Medical Device Technology1048-6690 1, 12 (2005).

    Google Scholar 

  31. 31

    N. A. Peppas, Preface (CRC, Boca Raton, FL, 1986), p. 18.

    Google Scholar 

  32. 32

    A. S. Hoffman, Adv. Drug Delivery Rev. 43, 3 (2002).

    Article  Google Scholar 

  33. 33

    K. C. Wood, H. F. Chuang, R. D. Battern, D. M. Lynn, and P. T. Hammond, Proc. Natl. Acad. Sci. U.S.A. 103, 10207 (2006).

    Article  CAS  Google Scholar 

  34. 34

    A. Haug, B. Larsen, and O. Smidsrød, Acta Chem. Scand. (1947-1973) 21, 691 (1967).

    Article  CAS  Google Scholar 

  35. 35

    T. J. Smith, Pharm. Technol. 18, 26 (1994).

    Google Scholar 

  36. 36

    J. L. Drury and D. Mooney, Biomaterials 24, 4337 (2003).

    Article  CAS  Google Scholar 

  37. 37

    H. J. Kong, E. Wong, and D. Mooney, Macromolecules 36, 4582 (2003).

    Article  CAS  Google Scholar 

  38. 38

    W. R. Gombotz and S. F. Wee, Adv. Drug Delivery Rev. 31, 267 (1998).

    Article  CAS  Google Scholar 

  39. 39

    J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials 20, 45 (1999).

    Article  CAS  Google Scholar 

  40. 40

    L. Wang, R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, and J. E. Barralet, Biomaterials 24, 3475 (2003).

    Article  CAS  Google Scholar 

  41. 41

    Y. Ueyama, K. Ishikawa, T. Mano, T. Koyama, H. Nagatsuka, K. Suzuki, and K. Ryoke, Biomaterials 23, 2027 (2002).

    Article  CAS  Google Scholar 

  42. 42

    K.Ishikawa, K. Suzuki, Y. Kamiyama, and T. Matsumura, JP 11253547.

  43. 43

    S. Tokura and H. Tamura, Advances in Chitin Science 6, 57 (2002).

    CAS  Google Scholar 

  44. 44

    H. Tamura, Y. Tsuruta, and S. Tokura, Mater. Sci. Eng., C C20, 143 (2002).

    Article  CAS  Google Scholar 

  45. 45

    H.Omidian, Y.Qiu, S.Yang, D.Kim, H. Park, and K. Park, WO 2003089506.

  46. 46

    X. L. Yan, E. Khor, and L. Y. Lim, J. Biomed. Mater. Res. 58, 358 (2001).

    Article  CAS  Google Scholar 

  47. 47

    C. Tapia, Z. Escobar, E. Costa, J. Sapag-Hagar, F. Valenzuela, C. Basualto, M. Nella Gai, and M. Yazdani-Pedram, Eur. J. Pharm. Biopharm. 57, 65 (2004).

    Article  CAS  Google Scholar 

  48. 48

    L. You, Y. Zou, Q. Jing, and L. Hu, Shenyang Yaoke Daxue Xuebao1006-2858 19, 168 (2002).

    CAS  Google Scholar 

  49. 49

    L. S. Liu, S. Q. Liu, S. Y. Ng, M. Froix, T. Ohno, and J. Heller, J. Controlled Release 43, 65 (1997).

    Article  CAS  Google Scholar 

  50. 50

    L. Wang, E. Khor, and L.-Y. Lim, J. Pharm. Sci. 90, 1134 (2001).

    Article  CAS  Google Scholar 

  51. 51

    A. Cardenas, W. Arguelles-Monal, F. M. Goycoolea, I. Higuera-Ciapara, and C. Penich, Macromol. Biosci. 3, 535 (2003).

    Article  CAS  Google Scholar 

  52. 52

    F. A. Simsek-Ege, G. M. Bond, and J. Stringer, J. Biomater. Sci., Polym. Ed. 13, 1175 (2002).

    Article  CAS  Google Scholar 

  53. 53

    L. Wang, E. Khor, A. Wee, and L. Y. Lim, J. Biomed. Mater. Res. 63, 610 (2002).

    Article  CAS  Google Scholar 

  54. 54

    D.Seliktar and R. Beyar, WO 2005055800.

  55. 55

    F. A. Simsek-Ege, G. M. Bond, and J. Stringer, J. Appl. Polym. Sci. 88, 346 (2003).

    Article  CAS  Google Scholar 

  56. 56

    T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Mater. Res. Soc. Symp. Proc. 734, 333 (2002).

    Article  CAS  Google Scholar 

  57. 57

    X. Wang and H. G. Spencer, J. Appl. Polym. Sci. 61, 827 (1996).

    Article  CAS  Google Scholar 

  58. 58

    T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Biomaterials 24, 2889 (2003).

    Article  CAS  Google Scholar 

  59. 59

    A. Bagno, M. Genovese, A. Luchini, M. Dettin, M. T. Conconi, A. M. Menti, P. P. Parnigotto, and C. Di Bello, Biomaterials 25, 2437 (2004).

    Article  CAS  Google Scholar 

  60. 60

    J. R. Adams and N. M. Bashara, Surf. Sci. 47, 655 (1975).

    Article  CAS  Google Scholar 

  61. 61

    J. Voros, Biophys. J. 87, 553 (2004).

    Article  Google Scholar 

  62. 62

    LEAD Technologies, SPPS@Base system, LEAD Technologies Inc. (2002).

  63. 63

    SPSS, Regression (2004).

  64. 64

    P. Peng, Ph.D. thesis, University of South Australia, 2005.

  65. 65

    S. J. Kim, K. J. Lee, and S. I. Kim, J. Appl. Polym. Sci. 93, 1097 (2004).

    Article  CAS  Google Scholar 

  66. 66

    N. A. Peppas, Pharm. Acta Helv. 60, 110 (1985).

    CAS  Google Scholar 

  67. 67

    R. Langer and N. Peppas, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C23, 61 (1983).

    Article  CAS  Google Scholar 

  68. 68

    R. W. Korsmeyer and N. A. Peppas, Controlled Release Delivery Systems (Dekker, New York, 1983), pp. 77–90.

    Google Scholar 

  69. 69

    R. W. Korsmeyer, R. Gurny, E. M. Doelker, P. Buri, and N. A. Peppas, Int. J. Pharm. 15, 25 (1983).

    Article  CAS  Google Scholar 

  70. 70

    C. K. Yeom and K. H. Lee, J. Appl. Polym. Sci. 67, 949 (1998).

    Article  CAS  Google Scholar 

  71. 71

    T. Hatakeyama, K. Nakamura, and H. Hatakeyama, Kobunshi Rombunshu 53, 795 (1996).

    Article  CAS  Google Scholar 

  72. 72

    H. L. Frisch, Polym. Eng. Sci. 20, 2 (1980).

    Article  Google Scholar 

  73. 73

    S. F. Sun, Physical Chemistry of Macromolecules (Wiley, New York, 1994), pp. 236–254.

    Google Scholar 

  74. 74

    P. Costa and J. M. S. Lobo, Eur. J. Pharm. Sci. 13, 123 (2001).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ping Peng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, P., Voelcker, N.H., Kumar, S. et al. Nanoscale eluting coatings based on alginate/chitosan hydrogels. Biointerphases 2, 95–104 (2007).

Download citation