Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus

Abstract

The surface of an indwelling medical device can be colonized by human pathogens that can form biofilms and cause infections. In most cases, these biofilms are resistant to antimicrobial therapy and eventually necessitate removal or replacement of the device. An engineered surface microtopography based on the skin of sharks, Sharklet AFTM, has been designed on a poly(dimethyl siloxane) elastomer (PDMSe) to disrupt the formation of bacterial biofilms without the use of bactericidal agents. The Sharklet AFTM PDMSe was tested against smooth PDMSe for biofilm formation of Staphylococcus aureus over the course of 21 days. The smooth surface exhibited early-stage biofilm colonies at 7 days and mature biofilms at 14 days, while the topographical surface did not show evidence of early biofilm colonization until day 21. At 14 days, the mean value of percent area coverage of S. aureus on the smooth surface was 54% compared to 7% for the Sharklet AFTM surface (p<0.01). These results suggest that surface modification of indwelling medical devices and exposed sterile surfaces with the Sharklet AFTM engineered topography may be an effective solution in disrupting biofilm formation of S. aureus.

References

  1. 1

    J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, Annu. Rev. Microbiol. 49, 711 (1995).

    Article  CAS  Google Scholar 

  2. 2

    J. Costerton, P. Stewart, and E. Greenberg, Science 284, 1318 (1999).

    Article  CAS  Google Scholar 

  3. 3

    A. Gristina, Science 237, 1588 (1987).

    Article  CAS  Google Scholar 

  4. 4

    J. W. Costerton, G. G. Geesey, and K.-J. Cheng, Sci. Am. 238(1), 86 (1978).

    Article  CAS  Google Scholar 

  5. 5

    C. Fux, J. Costerton, P. Stewart, and P. Stoodley, Trends Microbiol. 13, 34 (2005).

    Article  CAS  Google Scholar 

  6. 6

    W. Costerton, R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich, J. Clin. Invest. 112, 1466 (2003).

    CAS  Google Scholar 

  7. 7

    J. W. Costerton, G. Cook, M. Shirtliff, P. Stoodley, and M. Pasmore, in Biomaterials Science, edited by Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, and Jack E. Lemons (Elsevier, San Diego, CA, 2004), pp. 345–353.

    Google Scholar 

  8. 8

    C. Gordon, N. Hodges, and C. Marriott, J. Antimicrob. Chemother. 22, 667 (1988).

    Article  CAS  Google Scholar 

  9. 9

    W. Nichols, M. Evans, M. Slack, and H. Walmsley, J. Gen. Microbiol. 135, 1291 (1989).

    CAS  Google Scholar 

  10. 10

    L. G. Harris and R. G. Richards, Injury 37, S3 (2006).

    Article  Google Scholar 

  11. 11

    J. C. Nickel, I. Ruseska, J. B. Wright, and J. W. Costerton, Antimicrob. Agents Chemother. 27, 619 (1985).

    CAS  Google Scholar 

  12. 12

    R. M. Donlan and J. W. Costerton, Clin. Microbiol. Rev. 15, 167 (2002).

    Article  CAS  Google Scholar 

  13. 13

    R. Schwalbe, J. Stapleton, and P. Gilligan, N. Engl. J. Med. 316, 927 (1987).

    Article  CAS  Google Scholar 

  14. 14

    F. Biavasco, E. Giovanetti, M. P. Montanari, R. Lupidi, and P. E. Varaldo, J. Antimicrob. Chemother. 27, 71 (1991).

    Article  CAS  Google Scholar 

  15. 15

    K. Hiramatsu, H. Hanaki, T. Ino, K. Yabuta, T. Oguri, and F. C. Tenover, J. Antimicrob. Chemother. 40, 135 (1997).

    Article  CAS  Google Scholar 

  16. 16

    P. Vaudaux, P. Francois, B. Berger-Bachi, and D. P. Lew, J. Antimicrob. Chemother. 47, 163 (2001).

    Article  CAS  Google Scholar 

  17. 17

    Y. H. An and R. J. Friedman, J. Biomed. Mater. Res. 43, 338 (1998).

    Article  CAS  Google Scholar 

  18. 18

    W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, Clin. Oral Implants Res. 17, 68 (2006).

    Article  Google Scholar 

  19. 19

    E. Medilanski, K. Kaufmann, L. Y. Wick, O. Wanner, and H. Harms, Biofouling 18, 193 (2002).

    Article  Google Scholar 

  20. 20

    M. Pasmore, P. Todd, S. Smith, D. Baker, J. Silverstein, D. Coons, and C. N. Bowman, J. Membr. Sci. 194, 15 (2001).

    Article  CAS  Google Scholar 

  21. 21

    A. Allion, J.-P. Baron, and L. Boulange-Petermann, Biofouling 22, 269 (2006).

    Article  CAS  Google Scholar 

  22. 22

    T. Scheuerman, A. Camper, and M. Hamilton, J. Colloid Interface Sci. 208, 23 (1998).

    Article  CAS  Google Scholar 

  23. 23

    K. Whitehead, J. Colligon, and J. Verran, Colloids Surf., B 41, 129 (2005).

    Article  CAS  Google Scholar 

  24. 24

    M. Carman et al., Biofouling 22, 11 (2006).

    Article  CAS  Google Scholar 

  25. 25

    J. F. Schumacher et al., Biofouling 23, 55 (2007).

    Article  CAS  Google Scholar 

  26. 26

    J. F. Schumacher, N. Aldred, M. E. Callow, J. A. Finlay, J. A. Callow, A. S. Clare, and A. B. Brennan, Biofouling (to be published).

  27. 27

    A. S. Clare and J. A. Nott, J. Mar. Biol. Assoc. U.K. 74, 967 (1994).

    Article  Google Scholar 

  28. 28

    P. Antonelli, J. Lee, and R. Burne, Otol. Neurotol. 25, 953 (2004).

    Article  Google Scholar 

  29. 29

    L. Hoipkemeier-Wilson et al., Biofouling 20, 53 (2004).

    Article  CAS  Google Scholar 

  30. 30

    A. W. Feinberg et al., ACS Symp. Ser. 838, 196 (2003).

    Article  CAS  Google Scholar 

  31. 31

    W. S. Rasband, IMAGEJ, U.S. National Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/, 1997-2006.

  32. 32

    R. J. Sherertz, in Infections Associated with Indwelling Medical Devices, edited by F. A. Waldogel and A. L. Bisno (ASM, Washington, DC, 2000), pp. 111–125.

    Google Scholar 

  33. 33

    A. W. Feinberg, W. R.Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson and A. B. Brennan, J. Biomed. Mater. Res. (to be published).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony B. Brennan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, K.K., Schumacher, J.F., Sampson, E.M. et al. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus . Biointerphases 2, 89–94 (2007). https://doi.org/10.1116/1.2751405

Download citation