Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus

Article metrics

Abstract

The surface of an indwelling medical device can be colonized by human pathogens that can form biofilms and cause infections. In most cases, these biofilms are resistant to antimicrobial therapy and eventually necessitate removal or replacement of the device. An engineered surface microtopography based on the skin of sharks, Sharklet AFTM, has been designed on a poly(dimethyl siloxane) elastomer (PDMSe) to disrupt the formation of bacterial biofilms without the use of bactericidal agents. The Sharklet AFTM PDMSe was tested against smooth PDMSe for biofilm formation of Staphylococcus aureus over the course of 21 days. The smooth surface exhibited early-stage biofilm colonies at 7 days and mature biofilms at 14 days, while the topographical surface did not show evidence of early biofilm colonization until day 21. At 14 days, the mean value of percent area coverage of S. aureus on the smooth surface was 54% compared to 7% for the Sharklet AFTM surface (p<0.01). These results suggest that surface modification of indwelling medical devices and exposed sterile surfaces with the Sharklet AFTM engineered topography may be an effective solution in disrupting biofilm formation of S. aureus.

References

  1. 1

    J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, Annu. Rev. Microbiol. 49, 711 (1995).

  2. 2

    J. Costerton, P. Stewart, and E. Greenberg, Science 284, 1318 (1999).

  3. 3

    A. Gristina, Science 237, 1588 (1987).

  4. 4

    J. W. Costerton, G. G. Geesey, and K.-J. Cheng, Sci. Am. 238(1), 86 (1978).

  5. 5

    C. Fux, J. Costerton, P. Stewart, and P. Stoodley, Trends Microbiol. 13, 34 (2005).

  6. 6

    W. Costerton, R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich, J. Clin. Invest. 112, 1466 (2003).

  7. 7

    J. W. Costerton, G. Cook, M. Shirtliff, P. Stoodley, and M. Pasmore, in Biomaterials Science, edited by Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, and Jack E. Lemons (Elsevier, San Diego, CA, 2004), pp. 345–353.

  8. 8

    C. Gordon, N. Hodges, and C. Marriott, J. Antimicrob. Chemother. 22, 667 (1988).

  9. 9

    W. Nichols, M. Evans, M. Slack, and H. Walmsley, J. Gen. Microbiol. 135, 1291 (1989).

  10. 10

    L. G. Harris and R. G. Richards, Injury 37, S3 (2006).

  11. 11

    J. C. Nickel, I. Ruseska, J. B. Wright, and J. W. Costerton, Antimicrob. Agents Chemother. 27, 619 (1985).

  12. 12

    R. M. Donlan and J. W. Costerton, Clin. Microbiol. Rev. 15, 167 (2002).

  13. 13

    R. Schwalbe, J. Stapleton, and P. Gilligan, N. Engl. J. Med. 316, 927 (1987).

  14. 14

    F. Biavasco, E. Giovanetti, M. P. Montanari, R. Lupidi, and P. E. Varaldo, J. Antimicrob. Chemother. 27, 71 (1991).

  15. 15

    K. Hiramatsu, H. Hanaki, T. Ino, K. Yabuta, T. Oguri, and F. C. Tenover, J. Antimicrob. Chemother. 40, 135 (1997).

  16. 16

    P. Vaudaux, P. Francois, B. Berger-Bachi, and D. P. Lew, J. Antimicrob. Chemother. 47, 163 (2001).

  17. 17

    Y. H. An and R. J. Friedman, J. Biomed. Mater. Res. 43, 338 (1998).

  18. 18

    W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, Clin. Oral Implants Res. 17, 68 (2006).

  19. 19

    E. Medilanski, K. Kaufmann, L. Y. Wick, O. Wanner, and H. Harms, Biofouling 18, 193 (2002).

  20. 20

    M. Pasmore, P. Todd, S. Smith, D. Baker, J. Silverstein, D. Coons, and C. N. Bowman, J. Membr. Sci. 194, 15 (2001).

  21. 21

    A. Allion, J.-P. Baron, and L. Boulange-Petermann, Biofouling 22, 269 (2006).

  22. 22

    T. Scheuerman, A. Camper, and M. Hamilton, J. Colloid Interface Sci. 208, 23 (1998).

  23. 23

    K. Whitehead, J. Colligon, and J. Verran, Colloids Surf., B 41, 129 (2005).

  24. 24

    M. Carman et al., Biofouling 22, 11 (2006).

  25. 25

    J. F. Schumacher et al., Biofouling 23, 55 (2007).

  26. 26

    J. F. Schumacher, N. Aldred, M. E. Callow, J. A. Finlay, J. A. Callow, A. S. Clare, and A. B. Brennan, Biofouling (to be published).

  27. 27

    A. S. Clare and J. A. Nott, J. Mar. Biol. Assoc. U.K. 74, 967 (1994).

  28. 28

    P. Antonelli, J. Lee, and R. Burne, Otol. Neurotol. 25, 953 (2004).

  29. 29

    L. Hoipkemeier-Wilson et al., Biofouling 20, 53 (2004).

  30. 30

    A. W. Feinberg et al., ACS Symp. Ser. 838, 196 (2003).

  31. 31

    W. S. Rasband, IMAGEJ, U.S. National Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/, 1997-2006.

  32. 32

    R. J. Sherertz, in Infections Associated with Indwelling Medical Devices, edited by F. A. Waldogel and A. L. Bisno (ASM, Washington, DC, 2000), pp. 111–125.

  33. 33

    A. W. Feinberg, W. R.Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson and A. B. Brennan, J. Biomed. Mater. Res. (to be published).

Download references

Author information

Correspondence to Anthony B. Brennan.

Rights and permissions

Reprints and Permissions

About this article