Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Water at solid surfaces: A review of selected theoretical aspects and experiments on the subject

Article metrics

  • 576 Accesses

  • 10 Citations

Abstract

This review summarizes select aspects of the research on solid/water interfaces. Despite the considerable amount of work, the way water molecules are organized at the interface is still a source of debate. Theoretical efforts will be presented in combination with the results of computer simulations. The current status of investigations obtained with x-rays and neutron reflectometries, and sum frequency generation spectroscopy (all sensitive to the properties of solid/liquid interfaces) will be summarized and discussed.

References

  1. 1

    R. Evans and U. M. B. Marconi, J. Chem. Phys. 86, 7138 (1987).

  2. 2

    J. Israelachvili and H. Wenneström, Nature (London) 379, 219 (1996).

  3. 3

    S. Dietrich, J. Phys.: Condens. Matter 8, 9127 (1996).

  4. 4

    R. Evans, R. J. F. Leote de Carvalho, J. R. Henderson, and D. C. Hoyle, J. Phys. Chem. 100, 591 (1994).

  5. 5

    B. Bhushan, J. N. Israelachvili, and U. Landman, Nature (London) 374, 607 (1995).

  6. 6

    J. Gao, W. D. Leudtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).

  7. 7

    J. E. Curry, J. Chem. Phys. 113, 2400 (2000).

  8. 8

    S. T. Cui, P. T. Cummings, and H. D. Cochran, J. Chem. Phys. 114, 7189 (2001).

  9. 9

    S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).

  10. 10

    10T. Hayashi, A. J. Pertsin, and M. Grunze, J. Chem. Phys. 117, 6271 (2002).

  11. 11

    D. Leckband and J. Iraelachivili, Q. Rev. Biophys. 34, 105 (2001).

  12. 12

    H. K. Christenson and P. M. Claesson, Adv. Colloid Interface Sci. 91, 391 (2001).

  13. 13

    J. Milhaud, Biochim. Biophys. Acta 1663, 19 (2004).

  14. 14

    L. R. Pratt and A. Pohorille, Chem. Rev. 102, 2671 (2002).

  15. 15

    K. Murzyn, W. Zhao, M. Karttunen, M. Kurdziel, and T. Rog, Biointerphases 1, 98 (2006).

  16. 16

    K. Aman, E. Lindahl, O. Edholm, P. Hakansson, and P.-O. Westlund, Biophys. J. 84, 115 (2003).

  17. 17

    S. E. Feller, A. Rojunkarin, S. Bogusz, and B. R. Brooks, J. Phys. Chem. 100, 17011 (1996).

  18. 18

    E. A. Vogler, Adv. Colloid Interface Sci. 74, 69 (1998).

  19. 19

    D. Quere, Physica A 313, 32 (2002).

  20. 20

    R. E. Johnson and R. H. Dettre, Adv. Chem. Ser. 43, 112 (1964).

  21. 21

    P. G. De Gennes, Rev. Mod. Phys. 57(3), 827 (1985).

  22. 22

    G. Ash, D. H. Everett, and C. Radke, J. Chem. Soc., Faraday Trans. 2 69, 1256 (1973).

  23. 23

    D. G. Hall, J. Chem. Soc., Faraday Trans. 2 68, 2169 (1972).

  24. 24

    P. Attard, D. R. Berard, C. P. Ursenbach, and G. N. Patey, Phys. Rev. A 44, 8224 (1991).

  25. 25

    K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B 103, 4570 (1999).

  26. 26

    N. A. M. Besseling, Langmuir 13, 2113 (1997).

  27. 27

    J. J. Magda, M. Tirrel, and H. T. Davis, J. Chem. Phys. 83, 1888 (1985).

  28. 28

    J. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B 102, 5033 (1998).

  29. 29

    V. Buch and J. P. Devlin, Water in Confined Geometries (Springer, Berlin, 2003).

  30. 30

    W. L. Jorgensen and J. Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 102, 6665 (2005).

  31. 31

    A. Wallqvist and B. J. Berne, J. Phys. Chem. 99, 2893 (1995).

  32. 32

    A. Wallqvist and B. J. Berne, J. Phys. Chem. 97, 13841 (1993).

  33. 33

    J. Forsman, B. Joensson, and C. E. Woodward, J. Phys. Chem. 100, 15005 (1996).

  34. 34

    J. P. Postma, H. J. C. Berendsen, and J. R. Haak, Faraday Symp. Chem. Soc. 17, 55 (1982).

  35. 35

    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

  36. 36

    J. Forsman, C. E. Woodward, and B. Joensson, Langmuir 13, 5459 (1997).

  37. 37

    S. I. Mamatkulov, P. K. Khabibullaev, and R. R. Netz, Langmuir 20, 4756 (2004).

  38. 38

    A. Pertsin and M. Grunze, J. Phys. Chem. B 108, 1357 (2004).

  39. 39

    G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London) 414, 188 (2001).

  40. 40

    K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature (London) 412, 802 (2001).

  41. 41

    W. H. Noon, K. D. Ausman, R. E. Smalley, and J. Ma, Chem. Phys. Lett. 355, 445 (2002).

  42. 42

    A. Pertsin and M. Grunze, J. Phys. Chem. B 108, 16533 (2004).

  43. 43

    X. Zhang, Y. Zhu, and S. Granick, Science 295, 663 (2002).

  44. 44

    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. 106, 12274 (2002).

  45. 45

    C. Dicke, K. Feldman, W. Eck, S. Herrwerth, and G. Häner, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 41, 1444 (2001).

  46. 46

    P. Harder, M. Grunze, R. Dahint, G. M. Whitesedes, and P. E. Labinis, J. Phys. Chem. B 102, 426 (1998).

  47. 47

    J. Daillant and A. Gibauds, in X-ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 1999).

  48. 48

    J. R. Lu and R. K. Thomas, J. Chem. Soc., Faraday Trans. 94, 995 (1998).

  49. 49

    R. Steitz, T. Gutberlet, T. Hauss, B. Klosgen, R. Krastev, S. Schemmel, A. C. Simonsen, and G. H. Findenegg, Langmuir 19, 2409 (2003).

  50. 50

    T. R. Jensen, M. O. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kajer, and T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).

  51. 51

    D. Schwendel, T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Steitz, and F. Schreiber, Langmuir 19, 2284 (2003).

  52. 52

    M. Maccarini, R. Steitz, M. Himmelhaus, J. Fick, S. Tatur, M. Grunze, J. Janecek, and R. R. Netz, Langmuir 23, 598 (2007).

  53. 53

    X. H. Zhang, A. Khan, and W. A. Ducker, Phys. Rev. Lett. 98, 136101 (2007).

  54. 54

    D. K. Owens, J. Appl. Polym. Sci. 13, 1741 (1969).

  55. 55

    J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).

  56. 56

    V. I. Silin, H. Wieder, J. T. Woodward, G. Valincius, A. Offenhausser, and A. L. Plant, J. Am. Chem. Soc. 124, 14676 (2002).

  57. 57

    P. Ball, Nature (London) 423, 25 (2003).

  58. 58

    E. E. Meyer, Q. Lin, and J. N. Israelachvili, Langmuir 21, 256 (2005).

  59. 59

    K. Leung, A. Luzar, and D. Bratko, Phys. Rev. Lett. 90, 065502 (2003).

  60. 60

    D. A. Doshi, E. B. Watkins, J. N. Israelachvili, and J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).

  61. 61

    M. Mezger, H. Reichert, S. Schöder, J. Okasinki, H. Schrödre, H. Dosch, D. Palms, J. Ralston, and V. Honkimäki, Proc. Natl. Acad. Sci. U.S.A. 103, 18401 (2006).

  62. 62

    A. Poynor, L. Hong, I. K. Robinson, and S. Granick, Phys. Rev. Lett. 97, 266101 (2006).

  63. 63

    C. Cottin-Bizonne, B. Cross, A. Steinberger, and E.Charlaix, Phys. Rev. Lett. 94, 056102 (2005).

  64. 64

    U. Raviv, S. Gaisson, J. Frey, and J. Klein, J. Phys.: Condens. Matter 14, 9275 (2002).

  65. 65

    L. Cheng, P. Fenter, K. L. Nagy, M. L. Schegel, and N. C. Sturchio, Phys. Rev. Lett. 87(15), 156103 (2001).

  66. 66

    J. Wang, B. M. Ocko, A. J. Davenport, and H. S. Isaacs, Phys. Rev. B 46, 321 (1992); M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, O. R. Melroy, D. G. Wiesler, D. Lee, and L. B. Sorensen, Nature (London) 368, 444 (1994); Y. S. Chu, T. E. Lister, W. G. Cullen, H. You, and Z. Nagy, Phys. Rev. Lett. 86, 3364 (2001).

  67. 67

    J. N. Israelachvili and R. M. Pashley, Nature (London) 306, 249 (1983); J. Israelachvili and H. Wennerström, ibid. 379, 219 (1996); J. P. Cleveland, T. E. Schäffer, and P. K. Hansma, Phys. Rev. B 52, R8692 (1995).

  68. 68

    S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimäki, and A. Snigirev, Phys. Rev. Lett. 92, 205701 (2004).

  69. 69

    Z. Chen, Y. R. Shen, and G. A. Somorjai, Annu. Rev. Phys. Chem. 53, 437 (2002).

  70. 70

    G. L. Richmond, Annu. Rev. Phys. Chem. 52, 357 (2001).

  71. 71

    Q. Du, E. Freysz, and Y. R. Shen, Science 264, 826 (1994).

  72. 72

    J. R. Scherer and R. G. Snyder, J. Phys. Chem. 67, 4794 (1977).

  73. 73

    L. F. Scatena, M. G. Brown, and G. L. Richmond, Science 292, 908 (2001).

  74. 74

    Q. Du, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 72, 238 (1994).

  75. 75

    M. C. Gurau, G. Kim, S. M. Lim, F. Albertorio, H. C. Fleischer, and P. Cremer, ChemPhysChem 4, 1231 (2003).

  76. 76

    V. Buch, J. Phys. Chem. B 109, 17771 (2005).

  77. 77

    Private communication.

  78. 78

    U. Raviv, P. Laurat, and J. Klein, Nature (London) 413, 51 (2001).

  79. 79

    G. M. Brown, E. A. Raymond, C. H. Allen, L. F. Scatena, and G. L. Richmond, J. Phys. Chem. A 104, 10220 (2000).

  80. 80

    S. Kataoka, M. C. Gurau, F. Albertorio, M. A. Holden, S. M. Lim, R. D. Yang, and P. Cremer, Langmuir 20, 1662 (2004).

  81. 81

    K. A. Becraft and G. L. Richmond, Langmuir 17, 7721 (2001).

  82. 82

    L. Wu and W. J. Forsling, J. Colloid Interface Sci. 174, 178 (1995).

  83. 83

    J. Kim, G. Kim, and P. S. Cremer, Langmuir 17, 7255 (2001).

  84. 84

    See, for example, C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc. 110, 6560 (1988); A. Heise, M. Stamm, M. Rauscher, H. Duschner, and H. Menzel, Thin Solid Films 327-329, 199 (1998).

  85. 85

    E. Kokkoli and C. F. Zukoski, Langmuir 14, 1189 (1998).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article