Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Temperature dependence of the short-range repulsion between hydrated phospholipid membranes: A computer simulation study

Abstract

The temperature dependence of the short-range water-mediated repulsive pressure between supported phospholipid membranes is calculated at two intermembrane separations using the grand canonical Monte Carlo technique. At both separations, the simulated pressure tends to decrease with temperature, in qualitative agreement with the experimental measurements by Simon and co-workers [Simon et al., Biophys. J. 69, 1473 (1995)]. The decrease in pressure originates, at least in part, from a slight dehydration of the membranes and the associated reduction in the hydration component of the pressure.

References

  1. 1

    R. Lipowsky and E. Sackmann, Structure and Dynamics of Membrane (Elsevier, Amsterdam, 1995), Vol. 1.

    Google Scholar 

  2. 2

    R. P. Rand and V. A. Parsegian, Biochim. Biophys. Acta 988, 351 (1989); S. Leikin, V. A. Parsegian, and D. C. Rau, Annu. Rev. Phys. Chem. 44, 369 (1993).

    CAS  Google Scholar 

  3. 3

    S. Marçelja and N. Radic, Chem. Phys. Lett. 42, 129 (1976); D. W. R. Gruen and S. Marçelja, J. Chem. Soc., Faraday Trans. 2 79, 225 (1983).

    Article  Google Scholar 

  4. 4

    J. N. Israelachvili and H. Wennerström, Langmuir 6, 873 (1990); J. N. Israelachvili and H. Wennerström, J. Phys. Chem. 96, 520 (1992); J. Israelachvili and H. Wennerström, Nature (London) 379, 219 (1996).

    Article  CAS  Google Scholar 

  5. 5

    T. J. McIntosh and S. A. Simon, Colloids Surf., A 116, 251 (1996); T. J. McIntosh, Curr. Opin. Struct. Biol. 10, 481 (2000); V. A. Parsegian and R. P. Rand, Langmuir 7, 1299 (1991).

    Article  CAS  Google Scholar 

  6. 6

    R. Lipowsky and S. Grotehans, Europhys. Lett. 23, 599 (1993).

    Article  CAS  Google Scholar 

  7. 7

    L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, and V. A. Parsegian, Biophys. J. 37, 657 (1982).

    CAS  Google Scholar 

  8. 8

    S. A. Simon, S. Advani, and T. J. McIntosh, Biophys. J. 69, 1473 (1995).

    Article  CAS  Google Scholar 

  9. 9

    A. Pertsin, D. Platonov, and M. Grunze, J. Chem. Phys. 122, 244708 (2005).

    Article  Google Scholar 

  10. 10

    A. Pertsin, D. Platonov, and M. Grunze, Biointerphases 1, 40 (2006).

    Article  CAS  Google Scholar 

  11. 11

    A. Pertsin, D. Platonov, and M. Grunze, Langmuir 23, 1388 (2007).

    Article  CAS  Google Scholar 

  12. 12

    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  13. 13

    A. M. Smondyrev and M. L. Berkowitz, J. Comput. Chem. 20, 531 (1999).

    Article  CAS  Google Scholar 

  14. 14

    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  15. 15

    A. J. Pertsin and A. I. Kitaigorodsky, The Atom-Atom Potential Method (Springer, Berlin, 1987).

    Google Scholar 

  16. 16

    M. R. Stapleton and A. Panagiotopoulos, J. Chem. Phys. 92, 1285 (1990).

    Article  CAS  Google Scholar 

  17. 17

    R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  Google Scholar 

  18. 18

    J. C. Shelley and G. N. Patey, J. Chem. Phys. 102, 7656 (1995).

    Article  CAS  Google Scholar 

  19. 19

    A. Pertsin and M. Grunze, J. Phys. Chem. B 108, 16533 (2004).

    Article  CAS  Google Scholar 

  20. 20

    J. F. Nagle and M. C. Wiener, Biochim. Biophys. Acta 942, 1 (1988).

    Article  CAS  Google Scholar 

  21. 21

    Although modern MD simulations of phospholipid membranes are performed, for the most part, with 64 lipids per monolayer, the simulation boxes containing 32–36 lipid molecules have been shown (Ref. 22) to be large enough to reproduce the main structural and dynamical features of hydrated lipid bilayers. The obvious inability of the so small systems to reproduce membrane undulations is of no concern of simulations of supported membranes, where the undulations are suppressed anyhow.

  22. 22

    A. H. de Vries, I. Chandrasekhar, W. F. van Gunsteren, and P. H. Hünenberger, J. Phys. Chem. B 109, 11643 (2005).

    Article  Google Scholar 

  23. 23

    D. J. Adams, Mol. Phys. 28, 1241 (1974).

    Article  CAS  Google Scholar 

  24. 24

    J. Marra, J. Colloid Interface Sci. 107, 446 (1985).

    Article  CAS  Google Scholar 

  25. 25

    Compared to our previous results at T=308 K (Ref. 11), the present values of n w are somewhat higher, whereas those of p are lower. The reasons are the use of substantially longer GCMC runs, the averaging of the simulation results over a series of independent runs, and the use of the rotational bias procedure, which noticeably enhanced the sampling efficiency. All these factors promoted better equilibration of the system and made the sampling more representative.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pertsin, A., Grunze, M. Temperature dependence of the short-range repulsion between hydrated phospholipid membranes: A computer simulation study. Biointerphases 2, 105–108 (2007). https://doi.org/10.1116/1.2771541

Download citation

\