Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Structural characterization of an elevated lipid bilayer obtained by stepwise functionalization of a self-assembled alkenyl silane film

Abstract

This work reports a novel tethered lipid membrane supported on silicon oxide providing an improved model cell membrane. There is an increasing need for robust solid supported fluid model membranes that can be easily deposited on soft cushions. In such architecture the space between the membrane and the substrate should be tunable in the nanometer range. For this purpose a SiO2 surface was functionalized with poly(ethylene glycol) (PEG)-lipid tethers and further modified with poly(ethylene glycol) making a biologically passivated substrate available for lipid bilayer deposition. First, a short chain self-assembled alkenyl silane film was oxidized to yield terminal COOH groups and then functionalized with amino-terminated PEG-lipids via N-hydroxysuccinimide chemistry. The functionalized silane film was then additionally passivated by functionalization of unreacted COOH groups with amino-terminated PEG of variable chain length. X-ray photoelectron spectroscopy (XPS) analysis of dry films, carried out near the C 1s ionization edge to characterize chemical groups formed in the near-surface region, confirmed binding of PEG-lipid tethers to the silane film. XPS further indicated that backfilling with PEG caused the lipid tails to stick up above the PEG layer which was confirmed by the x-ray reflectivity measurements. Lipid vesicle fusion on these surfaces in the presence of excess water resulted in the formation of supported membranes characterized by very high homogeneity and long range mobility, as confirmed by fluorescence bleaching experiments. Even after repeated drying-hydrating cycles, these robust surfaces provided good templates for high fluidity elevated membranes. X-ray reflectivity measurements of the tethered membranes, with a resolution of 0.6 nm in water, showed that these fluid membranes are elevated up to 8 nm above the silicon oxide surface.

References

  1. 1

    E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  2. 2

    L. Tamm and H. McConnell, Biophys. J. 47, 105 (1985).

    Article  CAS  Google Scholar 

  3. 3

    A. L. Plant, Langmuir 9, 2764 (1993).

    Article  CAS  Google Scholar 

  4. 4

    M. B. Hochrein, C. Reich, B. Krause, J. Rädler, and B. Nickel, Langmuir 22, 538 (2006).

    Article  CAS  Google Scholar 

  5. 5

    R. P. Richter, J. Lai Kee Him, B. Tessier, C. Tessier, and A. R. Brisson, Biophys. J. 89, 3372 (2005).

    Article  CAS  Google Scholar 

  6. 6

    B. W. Koenig, S. Krueger, W. J. Orts, C. F. Majkrzak, N. F. Berk, J. Silverton, and K. Gawrisch, Langmuir 12, 1343 (1996).

    Article  CAS  Google Scholar 

  7. 7

    A. Lambacher and P. Fromherz, J. Opt. Soc. Am. B 19, 1435 (2002).

    Article  CAS  Google Scholar 

  8. 8

    E. Sackmann and R. Bruinsma, ChemPhysChem 3, 262 (2002).

    Article  CAS  Google Scholar 

  9. 9

    E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).

    Article  CAS  Google Scholar 

  10. 10

    J. Radler and E. Sackmann, Curr. Opin. Solid State Mater. Sci. 2, 330 (1997).

    Article  Google Scholar 

  11. 11

    P. Theato and R. Zentel, Langmuir 16, 1801 (2000).

    Article  CAS  Google Scholar 

  12. 12

    J. Y. Wong, J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith, Biophys. J. 77, 1445 (1999).

    Article  CAS  Google Scholar 

  13. 13

    M. Kühner and E. Sackmann, Langmuir 12, 4866 (1996).

    Article  Google Scholar 

  14. 14

    M. Schaub, G. Wenz, G. Wegner, A. Stein, and D. Klemm, Adv. Mater. 5, 919 (1993).

    Article  CAS  Google Scholar 

  15. 15

    C. Dietrich and R. Tampe, Biochim. Biophys. Acta 1238, 183 (1995).

    Article  Google Scholar 

  16. 16

    F. Albertorio, A. J. Diaz, T. Yang, V. A. Chapa, S. Kataoka, E. T. Castellana, and P. S. Cremer, Langmuir 21, 7476 (2005).

    Article  CAS  Google Scholar 

  17. 17

    M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).

    Article  CAS  Google Scholar 

  18. 18

    C. Delajon, T. Gutberlet, R. Steitz, H. Möhwald, and R. Krastev, Langmuir 21, 8509 (2005).

    Article  CAS  Google Scholar 

  19. 19

    A. M. Pilbat, Z. Szegletes, Z. Kota, V. Ball, P. Schaaf, J. C. Voegel, and B. Szalontai, Langmuir 23, 8236 (2007).

    Article  CAS  Google Scholar 

  20. 20

    R. J. Merath and U. Seifert, Phys. Rev. E 73, 010401 (2006).

    Article  Google Scholar 

  21. 21

    M. Seitz, E. Ter-Ovanesyan, M. Hausch, C. Park, J. A. Zasadzinski, R. Zentel, and J. N. Israelachvili, Langmuir 16, 6067 (2000).

    Article  CAS  Google Scholar 

  22. 22

    D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, and M. Lösche, Biointerphases 2, 21 (2007).

    Article  CAS  Google Scholar 

  23. 23

    V. Kiessling and L. K. Tamm, Biophys. J. 84, 408 (2003).

    Article  CAS  Google Scholar 

  24. 24

    O. Purrucker, A. Förtig, R. Jordan, and M. Tanaka, ChemPhysChem 5, 327 (2004).

    Article  CAS  Google Scholar 

  25. 25

    V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhäusser, W. Knoll, and I. Köper, Biophys. J. 89, 1780 (2005).

    Article  CAS  Google Scholar 

  26. 26

    W. W. Shen, S. G. Boxer, W. Knoll, and C. W. Frank, Biomacromolecules 2, 70 (2001).

    Article  CAS  Google Scholar 

  27. 27

    N. Bunjes, E. K. Schmidt, A. Jonczyk, F. Rippmann, D. Beyer, H. Ringsdorf, P. Gräber, W. Knoll, and R. Naumann, Langmuir 13, 6188 (1997).

    Article  CAS  Google Scholar 

  28. 28

    D. Schwendel, R. Dahint, S. Herrwerth, M. Schloerholz, W. Eck, and M. Grunze, Langmuir 17, 5717 (2001).

    Article  CAS  Google Scholar 

  29. 29

    S. Tokumitsu, A. Liebich, S. Herrwerth, W. Eck, M. Himmelhaus, and M. Grunze, Langmuir 18, 8862 (2002).

    Article  CAS  Google Scholar 

  30. 30

    S. R. Wasserman, Y. T. Tao, and G. M. Whitesides, Langmuir 5, 1074 (1989).

    Article  CAS  Google Scholar 

  31. 31

    J. Li and J. H. Horton, J. Mater. Chem. 12, 1268 (2002).

    Article  CAS  Google Scholar 

  32. 32

    C. Reich, M. Hochrein, B. Krause, and B. Nickel, Rev. Sci. Instrum. 76, 095103 (2005).

    Article  Google Scholar 

  33. 33

    L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  34. 34

    P. S. Pershan, Phys. Rev. E 50, 2369 (1994).

    Article  CAS  Google Scholar 

  35. 35

    A. Williams and I. T. Ibrahim, Chem. Rev. 81, 589 (1981).

    Article  CAS  Google Scholar 

  36. 36

    G. T. Hermanson, Bioconjugate Techniques (Academic, New York, 1996), pp. 139-140.

    Google Scholar 

  37. 37

    H. Kiessig, Ann. Phys. 402, 769 (1931).

    Article  Google Scholar 

  38. 38

    L. Andruzzi, A. Hexemer, X. Li, C. K. Ober, E. J. Kramer, G. Galli, E. Chiellini, and D. A. Fischer, Langmuir 20, 10498 (2004).

    Article  CAS  Google Scholar 

  39. 39

    C. Dietrich, R. Merkel, and R. Tampe, Biophys. J. 72, 1701 (1997).

    Article  CAS  Google Scholar 

  40. 40

    M. A. Deverall, E. Gindl, E. K. Sinner, H. Besir, J. Ruehe, M. J. Saxton, and C. A. Naumann, Biophys. J. 88, 1875 (2005).

    Article  CAS  Google Scholar 

  41. 41

    P. F. F. Almeida, W. L. C. Vaz, and T. E. Thompson, Biochemistry 31, 7198 (1992).

    Article  CAS  Google Scholar 

  42. 42

    C. A. Naumann, O. Prucker, T. Lehmann, J. Rühe, W. Knoll, and C. W. Frank, Biomacromolecules 3, 27 (2002).

    Article  CAS  Google Scholar 

  43. 43

    J. F. Nagle and S. Tristam-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).

    CAS  Google Scholar 

  44. 44

    D. Marsh, R. Bartucci, and L. Sportelli, Biochim. Biophys. Acta 1615, 33 (2003).

    Article  CAS  Google Scholar 

  45. 45

    S. Belsito, R. Bartucci, G. Montesano, D. Marsh, and L. Sportelli, Biophys. J. 78, 1420 (2000).

    Article  CAS  Google Scholar 

  46. 46

    R. N. Orth, J. Kameoka, W. R. Zipfel, B. Ilic, W. W. Webb, T. G. Clark, and H. G. Craighead, Biophys. J. 85, 3066 (2003).

    Article  CAS  Google Scholar 

  47. 47

    L. Andruzzi, B. Nickel, G. Schwake, J. O. Rädler, K. E. Sohn, T. E. Mates, and E. J. Kramer, Surf. Sci. (in press).

  48. 48

    See EPAPS Document No. E-BJIOBN-2-003703 for a sketch of the set up used to perform x-ray reflectometry and fluorescence measurements on a hydrated lipid membrane. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luisa Andruzzi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daniel, C., Sohn, K.E., Mates, T.E. et al. Structural characterization of an elevated lipid bilayer obtained by stepwise functionalization of a self-assembled alkenyl silane film. Biointerphases 2, 109–118 (2007). https://doi.org/10.1116/1.2790852

Download citation

\