Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Peptid-tethered bilayer lipid membranes and their interaction with Amyloid ß-peptide

Abstract

The Amyloid peptide (Aβ), a normal constituent of neuronal and non-neuronal cells, has been shown to be a major component of the extracellular plaque of Alzheimer disease (AD). The interaction of Aβ peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of AD. In this study, we have developed peptide-tethered artificial lipid membranes by the Langmuir-Blodgett and Langmuir-Schaefer methods. Anti-Aβ40-mAb labeled with a fluorophore was used to probe Aβ40 binding to these model membranes. Systematic studies on the antibody or Aβ-membrane interactions were carried out by surface plasmon field-enhanced fluorescence spectroscopy. It was found that the Aβ adsorption is critically depending on the lipid composition of the membranes, with Aβ specifically binding to membranes containing sphingomyelin. Further, this preferential adsorption was markedly amplified by the addition of sterols (cholesterol or 25-OH-Chol).

References

  1. 1

    N. Arispe, E. Rojas, and H. B. Pollard, Proc. Natl. Acad. Sci. U.S.A. 90, 567 (1993).

    CAS  Article  Google Scholar 

  2. 2

    C. J. Pike, D. Burdick, A. J. Walencewicz, C. G. Glabe, and C. W. Cotman, J. Neurosci. 13, 1676 (1993).

    CAS  Google Scholar 

  3. 3

    L. L. Iverson, R. J. Mortishire-Smith, S. J. Pollack, and M. S. Shearman, Biochem. J. 311, 1 (1995).

    Google Scholar 

  4. 4

    J. Mclaurin and A. Chakrabartty, Eur. J. Biochem. 245, 355 (1997).

    CAS  Article  Google Scholar 

  5. 5

    J. Fantini, N. Garmy, R. Mahfoud, and N. Yahi, Expert Rev. Mol. Med. 4, 1 (2002).

    Article  Google Scholar 

  6. 6

    A. Kakio, S. Nishimoto, K. Yanagisawa, Y. Kozutsumi, and K. Matsuzaki, J. Biol. Chem. 276, 24985 (2001).

    CAS  Article  Google Scholar 

  7. 7

    A. Kakio, S. Nishimoto, K. Yanagisawa, Y. Kazutsumi, and K. Matsuzaki, Biochem. J. 41, 7385 (2002).

    CAS  Article  Google Scholar 

  8. 8

    R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver, and J. Fantini, J. Biol. Chem. 277, 11292 (2002).

    CAS  Article  Google Scholar 

  9. 9

    S. Ji, Y. Wu, and S. Sui, J. Biol. Chem. 277, 6273 (2002).

    CAS  Article  Google Scholar 

  10. 10

    R. Naumann, D. Walz, S. M. Schiller, and W. Knoll, J. Electroanal. Chem. 550–551, 241 (2003).

    Google Scholar 

  11. 11

    S. Micelli, D. Meleleo, V. Picciarelli, and E. Gallucci, Biophys. J. 86, 2231 (2004).

    CAS  Article  Google Scholar 

  12. 12

    G. T. Vatassery, H. T. Quach, W. E. Smith, and J. Sjovall, Lipids 32, 879 (1997).

    CAS  Article  Google Scholar 

  13. 13

    J. Y. Chang and K. D. Phelan, in Sterols and Oxysterols: Chemistry, Biology, and Pathobiology, edited by S. J. Fliesler (2002).

  14. 14

    W. Knoll, H. Park, E. Sinner, D. Yao, and F. Yu, Surf. Sci. 570, 30 (2004).

    CAS  Article  Google Scholar 

  15. 15

    F. Yu, D. Yao, and W. Knoll, Anal. Chem. 75, 2610 (2003).

    CAS  Article  Google Scholar 

  16. 16

    S. W. Snyder, U. S. Ladror, G. T. Wang, L. W. Barrett, E. D. Matayoshi, H. J. Huffaker, G. A. Krafft, and T. F. Holzman, Biophys. J. 67, 1216 (1994).

    CAS  Article  Google Scholar 

  17. 17

    J. G. Gordon and J. D. Swalen, Opt. Commun. 22, 374 (1977).

    CAS  Article  Google Scholar 

  18. 18

    E. F. Aust, M. Sawodny, S. Ito, and W. Knoll, Scanning 16, 353 (1994).

    CAS  Google Scholar 

  19. 19

    B. Wiltschi, M. Schober, S. D. Kohlwein, D. Oesterheldt, and E. K. Sinner, Anal. Chem. 78, 547 (2006).

    CAS  Article  Google Scholar 

  20. 20

    D. Marsh, Biochem. Biophys. Acta 1286, 183 (1996).

    CAS  Google Scholar 

  21. 21

    M. Malmsten, Colloids Surf., B 4, 173 (1995).

    CAS  Article  Google Scholar 

  22. 22

    N. Wisniewski and M. Reichert, Colloids Surf., B 18, 197 (2000).

    CAS  Article  Google Scholar 

  23. 23

    N. Wisniewski, F. Moussy, and W. M. Reichert, Fresenius’ J. Anal. Chem. 366, 611 (2000).

    CAS  Article  Google Scholar 

  24. 24

    K. Ishihara, J. Biomater. Appl. 13, 111 (1998).

    CAS  Google Scholar 

  25. 25

    K. Matsuzaki and C. Horikiri, Biochemistry 38, 4137 (1999).

    CAS  Article  Google Scholar 

  26. 26

    M. Morishima-Kawashima and Y. Ihara, Biochemistry 37, 15247 (1998).

    CAS  Article  Google Scholar 

  27. 27

    M. Olsher, S. Yoon, and P. L. Chong, Biochemistry 44, 2080 (2005).

    CAS  Article  Google Scholar 

  28. 28

    S. Munro, Cell 115, 377 (2003).

    CAS  Article  Google Scholar 

  29. 29

    B. Steinbauer, T. Mehnert, and K. Beyer, Biophys. J. 85, 1013 (2003).

    CAS  Article  Google Scholar 

  30. 30

    C. Soto, E. M. Castano, R. A. Kumar, R. C. Beavis, and B. Frangione, Neurosci. Lett. 200, 105 (1995).

    CAS  Article  Google Scholar 

  31. 31

    M. Sunde, L. C. Serpell, M. Bartlmm, P. E. Fraser, M. B. Pepys, and C. C. Blake, J. Mol. Biol. 273, 729 (1997).

    CAS  Article  Google Scholar 

  32. 32

    C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levted, K. Jacobson, and E. Gratton, Biophys. J. 80, 1417 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haipeng Song.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, H., Sinner, EK. & Knoll, W. Peptid-tethered bilayer lipid membranes and their interaction with Amyloid ß-peptide. Biointerphases 2, 151–158 (2007). https://doi.org/10.1116/1.2804746

Download citation

\