Skip to main content

Journal for Biophysical Chemistry

Biointerphases Cover Image

Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect

Abstract

The study of protein-surface interactions is of great significance in the design of biomaterials and the evaluation of molecular processes in tissue engineering. The authors have used atomic force microscopy (AFM) to directly measure the force of attraction/adhesion of fibrinogen coated tips to mica surfaces and reveal the effect of the surrounding solution pH and ionic strength on this interaction. Silica colloid spheres were attached to the AFM cantilevers and, after plasma deposition of poly(acrylic acid), fibrinogen molecules were covalently bound on them with the help of the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of N-hydroxysulfosuccinimide (sulfo-NHS(. The measurements suggest that fibrinogen adsorption is controlled by the screening of electrostatic repulsion as the salt concentration increases from 15 to 150 mM, whereas at higher ionic strength (500 mM) the hydration forces and the compact molecular conformation become crucial, restricting adsorption. The protein attraction to the surface increases at the isoelectric point of fibrinogen (pH 5.8), compared with the physiological pH. At pH 3.5, apart from fibrinogen attraction to the surface, evidence of fibrinogen conformational changes is observed, as the pH and the ionic strength are set back and forth, and these changes may account for fibrinogen aggregation in the protein solution at this pH.

References

  1. 1

    C. A. Haynes and W. Norde, Colloids Surf., B 2, 517 (1994).

    Article  CAS  Google Scholar 

  2. 2

    P. G. Koutsoukos, C. A. Mumme-Young, W. Norde, and J. Lyklema, Colloids Surf. 5, 93 (1982).

    Article  CAS  Google Scholar 

  3. 3

    P. Wagner, FEBS Lett. 430, 112 (1998).

    Article  CAS  Google Scholar 

  4. 4

    H. P. Erickson and N. A. Carrell, J. Biol. Chem. 258, 14539 (1983).

    CAS  Google Scholar 

  5. 5

    Y. I. Verklich, O. V. Gorkun, L. V. Medved, W. Nieuwenhuizen, and J. W. Weisel, J. Biol. Chem. 268, 13577 (1993).

    Google Scholar 

  6. 6

    A. K. Bajpai, Polym. Int. 54, 304 (2005).

    Article  CAS  Google Scholar 

  7. 7

    T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Colloid Interface Sci. 203, 419 (1998).

    Article  CAS  Google Scholar 

  8. 8

    H. Matsumoto, Y. Koyama, and A. Tanioka, J. Colloid Interface Sci. 264, 82 (2003).

    Article  CAS  Google Scholar 

  9. 9

    J. L. Ortega-Vinuesa, P. Tengvall, and I. Lundstrom, Thin Solid Films 324, 257 (1998).

    Article  CAS  Google Scholar 

  10. 10

    S. O. Vansteenkiste, S. I. Corneillie, E. H. Schacht, X. Chen, M. C. Davies, M. Moens, and L. Van Vaeck, Langmuir 16, 3330 (2000).

    Article  CAS  Google Scholar 

  11. 11

    S. Kidoaki, Y. Nakayama, and T. Matsuda, Langmuir 17, 1080 (2001).

    Article  CAS  Google Scholar 

  12. 12

    A. Sethuraman, M. Han, R. S. Kane, and G. Belfort, Langmuir 20, 7779 (2004).

    Article  CAS  Google Scholar 

  13. 13

    X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, Langmuir 13, 4106 (1997).

    Article  CAS  Google Scholar 

  14. 14

    M. S. Wang, L. B. Palmer, J. D. Schwarz, and A. Razatos, Langmuir 20, 7753 (2004).

    Article  CAS  Google Scholar 

  15. 15

    S. Kidoaki and T. Matsuda, Langmuir 15, 7639 (1999).

    Article  CAS  Google Scholar 

  16. 16

    H. Zhang, K. E. Bremmell, and R. S. C. Smart, J. Biomed. Mater. Res. 74A, 59 (2005).

    Article  CAS  Google Scholar 

  17. 17

    J. J. Valle-Delgado, J. A. Molina-Bolivar, F. Galisteo-Gonzalez, M. J. Galvez-Ruiz, A. Feiler, and M. W. Rutland, J. Phys.: Condens. Matter 16, S2383 (2004).

    Article  Google Scholar 

  18. 18

    J. J. Valle-Delgado, J. A. Molina-Bolivar, F. Galisteo-Gonzalez, M. J. Galvez-Ruiz, A. Feiler, and M. W. Rutland, J. Phys. Chem. B 108, 5365 (2004).

    Article  CAS  Google Scholar 

  19. 19

    L. Meagher and H. J. Griesser, Colloids Surf., B 23, 125 (2002).

    Article  CAS  Google Scholar 

  20. 20

    S. L. McGurk, R. J. Green, G. H. W. Sanders, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, Langmuir 15, 5136 (1999).

    Article  CAS  Google Scholar 

  21. 21

    S. Pasche, J. Voros, H. J. Griesser, N. D. Spencer, and M. Textor, J. Phys. Chem. B 109, 17545 (2005).

    Article  CAS  Google Scholar 

  22. 22

    D. J. Muller and A. Engel, Biophys. J. 73, 1633 (1997).

    Article  CAS  Google Scholar 

  23. 23

    P. Hinterdorfer and Y. F. Dufrene, Nat. Methods 3, 347 (2006).

    Article  CAS  Google Scholar 

  24. 24

    T. S. Tsapikouni and Y. F. Missirlis, Colloids Surf., B 57, 89 (2007).

    Article  CAS  Google Scholar 

  25. 25

    S. Jung, S. Lim, F. Albertorio, G. Kim, M. C. Gurau, R. D. Yang, M. A. Holden, and P. S. Cremer, J. Am. Chem. Soc. 125, 12782 (2003).

    Article  CAS  Google Scholar 

  26. 26

    P. S. Sit and R. E. Marchant, Surf. Sci. 491, 421 (2001).

    Article  CAS  Google Scholar 

  27. 27

    E.-L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V. T. Moy, and H. E. Gaub, Biosens. Bioelectron. 10, 895 (1995).

    Article  CAS  Google Scholar 

  28. 28

    C. T. Gibson, D. J. Johnson, C. Anderson, C. Abell, and T. Rayment, Rev. Sci. Instrum. 75, 565 (2004).

    Article  CAS  Google Scholar 

  29. 29

    M. R. Alexander, J. D. Whittle, D. Barton, and R. D. Short, J. Mater. Chem. 14, 408 (2004).

    CAS  Google Scholar 

  30. 30

    G. T. Hermanson, Bioconjugated Techniques (Academic, San Diego, 1996). Part II, Chap. 3.

    Google Scholar 

  31. 31

    S. Candan, A. J. Beck, L. O’Toole, and R. D. Short, J. Vac. Sci. Technol. A 16, 1702 (1998).

    Article  CAS  Google Scholar 

  32. 32

    D. M. Czajkowsky and Z. Shao, J. Microsc. 211, 1 (2003).

    Article  CAS  Google Scholar 

  33. 33

    M. A. Osman, C. Moor, W. R. Caseri, and U. W. Suter, J. Colloid Interface Sci. 209, 232 (1999).

    Article  CAS  Google Scholar 

  34. 34

    T. C. Ta, M. T. Sykes, and M. T. McDermott, Langmuir 14, 2435 (1998).

    Article  CAS  Google Scholar 

  35. 35

    W. F. Heinz and J. H. Hoh, Biophys. J. 76, 528 (1999).

    Article  CAS  Google Scholar 

  36. 36

    O. H. Willemsen, M. M. E. Snel, L. Kuipers, C. G. Figdor, J. Greve, and B. G. D. Grooth, Biophys. J. 76, 716 (1999).

    Article  CAS  Google Scholar 

  37. 37

    R. M. Pashley, J. Colloid Interface Sci. 83, 531 (1981).

    Article  CAS  Google Scholar 

  38. 38

    D. Leckband and S. Sivasankar, Colloids Surf., B 14, 83 (1999).

    Article  CAS  Google Scholar 

  39. 39

    C. R. Hurley and G. J. Leggett, Langmuir 22, 4179 (2006).

    Article  CAS  Google Scholar 

  40. 40

    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992). Chap. 4.

    Google Scholar 

  41. 41

    D. J. Muller, D. Fotiadis, S. Scheuring, S. A. Muller, and A. Engel, Biophys. J. 76, 1101 (1999).

    Article  CAS  Google Scholar 

  42. 42

    B. Bhushan, Handbook of Nanotechnology (Springer, Berlin, 2004). Chap. 15.

    Google Scholar 

  43. 43

    B. P. Frank and G. Belfort, J. Membr. Sci. 212, 205 (2003).

    Article  CAS  Google Scholar 

  44. 44

    J. Hemmerle, S. M. Altmann, M. Maaloum, J. K. H. Horber, L. Heinrich, J. C. Voegel, and P. Schaaf, Proc. Natl. Acad. Sci. U.S.A. 96, 6705 (1999).

    Article  CAS  Google Scholar 

  45. 45

    A. Verma, J. M. Simard, and V. M. Rotello, Langmuir 20, 4178 (2004).

    Article  CAS  Google Scholar 

  46. 46

    Y. Roiter, W. Jaeger, and S. Minko, Polymer 47, 2493 (2006).

    Article  CAS  Google Scholar 

  47. 47

    D. McCormack, S. L. Carnie, and D. Y. C. Chan, J. Colloid Interface Sci. 169, 177 (1995).

    Article  CAS  Google Scholar 

  48. 48

    R. J. Hunter, Foundations of Colloid Science (Oxford Science, New York, 1987). Chap. 7.

    Google Scholar 

  49. 49

    R. F. Doolittle, Protein Sci. 1, 1563 (1992).

    Article  CAS  Google Scholar 

  50. 50

    C. Fuss, J. C. Palmaz, and E. A. Sprague, J. Vasc. Interv. Radiol. 12, 677 (2001).

    Article  CAS  Google Scholar 

  51. 51

    K. L. Marchin and C. L. Berrie, Langmuir 19, 9883 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yannis F. Missirlisa).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsapikouni, T.S., Allen, S. & Missirlisa), Y.F. Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect. Biointerphases 3, 1–8 (2008). https://doi.org/10.1116/1.2840052

Download citation