Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect

Article metrics

  • 624 Accesses

  • 17 Citations

Abstract

The study of protein-surface interactions is of great significance in the design of biomaterials and the evaluation of molecular processes in tissue engineering. The authors have used atomic force microscopy (AFM) to directly measure the force of attraction/adhesion of fibrinogen coated tips to mica surfaces and reveal the effect of the surrounding solution pH and ionic strength on this interaction. Silica colloid spheres were attached to the AFM cantilevers and, after plasma deposition of poly(acrylic acid), fibrinogen molecules were covalently bound on them with the help of the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of N-hydroxysulfosuccinimide (sulfo-NHS(. The measurements suggest that fibrinogen adsorption is controlled by the screening of electrostatic repulsion as the salt concentration increases from 15 to 150 mM, whereas at higher ionic strength (500 mM) the hydration forces and the compact molecular conformation become crucial, restricting adsorption. The protein attraction to the surface increases at the isoelectric point of fibrinogen (pH 5.8), compared with the physiological pH. At pH 3.5, apart from fibrinogen attraction to the surface, evidence of fibrinogen conformational changes is observed, as the pH and the ionic strength are set back and forth, and these changes may account for fibrinogen aggregation in the protein solution at this pH.

References

  1. 1

    C. A. Haynes and W. Norde, Colloids Surf., B 2, 517 (1994).

  2. 2

    P. G. Koutsoukos, C. A. Mumme-Young, W. Norde, and J. Lyklema, Colloids Surf. 5, 93 (1982).

  3. 3

    P. Wagner, FEBS Lett. 430, 112 (1998).

  4. 4

    H. P. Erickson and N. A. Carrell, J. Biol. Chem. 258, 14539 (1983).

  5. 5

    Y. I. Verklich, O. V. Gorkun, L. V. Medved, W. Nieuwenhuizen, and J. W. Weisel, J. Biol. Chem. 268, 13577 (1993).

  6. 6

    A. K. Bajpai, Polym. Int. 54, 304 (2005).

  7. 7

    T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Colloid Interface Sci. 203, 419 (1998).

  8. 8

    H. Matsumoto, Y. Koyama, and A. Tanioka, J. Colloid Interface Sci. 264, 82 (2003).

  9. 9

    J. L. Ortega-Vinuesa, P. Tengvall, and I. Lundstrom, Thin Solid Films 324, 257 (1998).

  10. 10

    S. O. Vansteenkiste, S. I. Corneillie, E. H. Schacht, X. Chen, M. C. Davies, M. Moens, and L. Van Vaeck, Langmuir 16, 3330 (2000).

  11. 11

    S. Kidoaki, Y. Nakayama, and T. Matsuda, Langmuir 17, 1080 (2001).

  12. 12

    A. Sethuraman, M. Han, R. S. Kane, and G. Belfort, Langmuir 20, 7779 (2004).

  13. 13

    X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, Langmuir 13, 4106 (1997).

  14. 14

    M. S. Wang, L. B. Palmer, J. D. Schwarz, and A. Razatos, Langmuir 20, 7753 (2004).

  15. 15

    S. Kidoaki and T. Matsuda, Langmuir 15, 7639 (1999).

  16. 16

    H. Zhang, K. E. Bremmell, and R. S. C. Smart, J. Biomed. Mater. Res. 74A, 59 (2005).

  17. 17

    J. J. Valle-Delgado, J. A. Molina-Bolivar, F. Galisteo-Gonzalez, M. J. Galvez-Ruiz, A. Feiler, and M. W. Rutland, J. Phys.: Condens. Matter 16, S2383 (2004).

  18. 18

    J. J. Valle-Delgado, J. A. Molina-Bolivar, F. Galisteo-Gonzalez, M. J. Galvez-Ruiz, A. Feiler, and M. W. Rutland, J. Phys. Chem. B 108, 5365 (2004).

  19. 19

    L. Meagher and H. J. Griesser, Colloids Surf., B 23, 125 (2002).

  20. 20

    S. L. McGurk, R. J. Green, G. H. W. Sanders, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, Langmuir 15, 5136 (1999).

  21. 21

    S. Pasche, J. Voros, H. J. Griesser, N. D. Spencer, and M. Textor, J. Phys. Chem. B 109, 17545 (2005).

  22. 22

    D. J. Muller and A. Engel, Biophys. J. 73, 1633 (1997).

  23. 23

    P. Hinterdorfer and Y. F. Dufrene, Nat. Methods 3, 347 (2006).

  24. 24

    T. S. Tsapikouni and Y. F. Missirlis, Colloids Surf., B 57, 89 (2007).

  25. 25

    S. Jung, S. Lim, F. Albertorio, G. Kim, M. C. Gurau, R. D. Yang, M. A. Holden, and P. S. Cremer, J. Am. Chem. Soc. 125, 12782 (2003).

  26. 26

    P. S. Sit and R. E. Marchant, Surf. Sci. 491, 421 (2001).

  27. 27

    E.-L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V. T. Moy, and H. E. Gaub, Biosens. Bioelectron. 10, 895 (1995).

  28. 28

    C. T. Gibson, D. J. Johnson, C. Anderson, C. Abell, and T. Rayment, Rev. Sci. Instrum. 75, 565 (2004).

  29. 29

    M. R. Alexander, J. D. Whittle, D. Barton, and R. D. Short, J. Mater. Chem. 14, 408 (2004).

  30. 30

    G. T. Hermanson, Bioconjugated Techniques (Academic, San Diego, 1996). Part II, Chap. 3.

  31. 31

    S. Candan, A. J. Beck, L. O’Toole, and R. D. Short, J. Vac. Sci. Technol. A 16, 1702 (1998).

  32. 32

    D. M. Czajkowsky and Z. Shao, J. Microsc. 211, 1 (2003).

  33. 33

    M. A. Osman, C. Moor, W. R. Caseri, and U. W. Suter, J. Colloid Interface Sci. 209, 232 (1999).

  34. 34

    T. C. Ta, M. T. Sykes, and M. T. McDermott, Langmuir 14, 2435 (1998).

  35. 35

    W. F. Heinz and J. H. Hoh, Biophys. J. 76, 528 (1999).

  36. 36

    O. H. Willemsen, M. M. E. Snel, L. Kuipers, C. G. Figdor, J. Greve, and B. G. D. Grooth, Biophys. J. 76, 716 (1999).

  37. 37

    R. M. Pashley, J. Colloid Interface Sci. 83, 531 (1981).

  38. 38

    D. Leckband and S. Sivasankar, Colloids Surf., B 14, 83 (1999).

  39. 39

    C. R. Hurley and G. J. Leggett, Langmuir 22, 4179 (2006).

  40. 40

    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992). Chap. 4.

  41. 41

    D. J. Muller, D. Fotiadis, S. Scheuring, S. A. Muller, and A. Engel, Biophys. J. 76, 1101 (1999).

  42. 42

    B. Bhushan, Handbook of Nanotechnology (Springer, Berlin, 2004). Chap. 15.

  43. 43

    B. P. Frank and G. Belfort, J. Membr. Sci. 212, 205 (2003).

  44. 44

    J. Hemmerle, S. M. Altmann, M. Maaloum, J. K. H. Horber, L. Heinrich, J. C. Voegel, and P. Schaaf, Proc. Natl. Acad. Sci. U.S.A. 96, 6705 (1999).

  45. 45

    A. Verma, J. M. Simard, and V. M. Rotello, Langmuir 20, 4178 (2004).

  46. 46

    Y. Roiter, W. Jaeger, and S. Minko, Polymer 47, 2493 (2006).

  47. 47

    D. McCormack, S. L. Carnie, and D. Y. C. Chan, J. Colloid Interface Sci. 169, 177 (1995).

  48. 48

    R. J. Hunter, Foundations of Colloid Science (Oxford Science, New York, 1987). Chap. 7.

  49. 49

    R. F. Doolittle, Protein Sci. 1, 1563 (1992).

  50. 50

    C. Fuss, J. C. Palmaz, and E. A. Sprague, J. Vasc. Interv. Radiol. 12, 677 (2001).

  51. 51

    K. L. Marchin and C. L. Berrie, Langmuir 19, 9883 (2003).

Download references

Author information

Correspondence to Yannis F. Missirlisa).

Rights and permissions

Reprints and Permissions

About this article