Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Membrane-substrate interface: Phospholipid bilayers at chemically and topographically structured surfaces

Article metrics

Abstract

The surface-assisted fusion, rupture, and spreading of vesicles and hydration-induced spreading of lipids onto chemically and topographically structured surfaces gives rise to lipid structures useful for modeling many physical-chemical properties of lipid bilayers. Chemically structured surfaces produce a lipid structure revealing template-induced assembly of coexisting lipid phases, which reflect the underlying pattern of surface energy, wettability, and chemistry. In a construct derived using photochemically patterned molecular monolayers, the author found a spontaneous separation of fluid bilayer regions from the fluid monolayer regions by a controllable transition region or moat. The coexisting bilayer/monolayer morphologies derived from single vesicular sources are particularly attractive for the study of a range of leaflet-dependent biophysical phenomena and offer a new self-assembly strategy for synthesizing large-scale arrays of functional bilayer specific substructures including ion-channels and membrane-proteins. The uses of topologically patterned surfaces similarly provide new models to design complex three-dimensional membrane topographies and curvatures. These platforms promise fundamental biophysical studies of curvature-dependent membrane processes as well as useful bioanalytical devices for molecular separations within fluid amphiphilic membrane environments. Some future directions enabled by lipid self-assembly at structured surfaces are also discussed.

References

  1. 1

    E. Sackmann, Science 271, 43 (1996).

  2. 2

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

  3. 3

    E. T. Castellana and P. S. Cremer, Surf. Sci. Rep. 61, 429 (2006).

  4. 4

    S. G. Boxer, Curr. Opin. Chem. Biol. 4, 704 (2000).

  5. 5

    G. Vereb, J. Szollosi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T. A. Waldmann, and S. Damjanovich, Proc. Natl. Acad. Sci. U.S.A. 100, 8053 (2003).

  6. 6

    J. T. Groves and S. G. Boxer, Acc. Chem. Res. 35, 149 (2002); A. A. Brian and H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 81, 6159 (1984); H. M. McConnell, T. H. Watts, R. M. Weis, and A. A. Brian, Biochim. Biophys. Acta 864, 95 (1986); K. D. Mossman, G. Campi, J. T. Groves, and M. L. Dustin, Science 310, 1191 (2005).

  7. 7

    A. N. Parikh and J. T. Groves, MRS Bull. 31, 507 (2006); B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997); H. M. Keizer, B. R. Dorvel, M. Andersson, D. Fine, R. B. Price, J. R. Long, A. Dodabalapur, I. Koper, W. Knoll, P. A. V. Anderson, and R. S. Duran, ChemBioChem 8, 1246 (2007).

  8. 8

    H. Bayley and P. S. Cremer, Nature (London) 413, 226 (2001); Y. Fang, A. G. Frutos, and J. Lahiri, J. Am. Chem. Soc. 124, 2394 (2002).

  9. 9

    P. S. Cremer and S. G. Boxer, J. Phys. Chem. B 103, 2554 (1999).

  10. 10

    I. Reviakine and A. Brisson, Langmuir 16, 1806 (2000).

  11. 11

    C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000).

  12. 12

    E. Kalb, S. Frey, and L. K. Tamm, Biochim. Biophys. Acta 1103, 307 (1992); L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

  13. 13

    J. Nissen, S. Gritsch, G. Wiegand, and J. O. Radler, Eur. Phys. J. B 10, 335 (1999).

  14. 14

    J. Nissen, K. Jacobs, and J. O. Radler, Phys. Rev. Lett. 86, 1904 (2001).

  15. 15

    B. Sanii and A. N. Parikh, Soft Matter 3, 974 (2007).

  16. 16

    V. Kiessling and L. K. Tamm, Biophys. J. 84, 408 (2003); A. Lambacher and P. Fromherz, Appl. Phys. A: Mater. Sci. Process. 63, 207 (1996); B. W. Koenig, S. Kruger, W. J. Orts, C. F. Majkrzak, N. F. Berk, J. V. Silverton, and K. Gawrisch, Langmuir 12, 1343 (1996); S. J. Johnson, T. M. Bayerl, D. C. McDermott, G. W. Adam, A. R. Rennie, R. K. Thomas, and E. Sackmann, Biophys. J. 59, 289 (1991); T. M. Bayerl and M. Bloom, ibid. 58, 357 (1990).

  17. 17

    R. J. White, B. Zhang, S. Daniel, J. M. Tang, E. N. Ervin, P. S. Cremer, and H. S. White, Langmuir 22, 10777 (2006); M. J. Higgins, M. Polcik, T. Fukuma, J. E. Sader, Y. Nakayama, and S. P. Jarvis, Biophys. J. 91, 2532 (2006).

  18. 18

    R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Nano Lett. 3, 589 (2003); C. Boissiere, J. B. Brubach, A. Mermet, G. de Marzi, C. Bourgaux, E. Prouzet, and P. Roy, J. Phys. Chem. B 106, 1032 (2002); M. C. Bellissent-Funel, J. Phys.: Condens. Matter 13, 9165 (2001).

  19. 19

    R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005); M. Kasbauer, M. Junglas, and T. M. Bayerl, Biophys. J. 76, 2600 (1999); M. Junglas, B. Danner, and T. M. Bayerl, Langmuir 19, 1914 (2003).

  20. 20

    M. C. Howland, A. R. Sapuri-Butti, S. S. Dixit, A. M. Dattelbaum, A. P. Shreve, and A. N. Parikh, J. Am. Chem. Soc. 127, 6752 (2005).

  21. 21

    P. Lenz, C. M. Ajo-Franklin, and S. G. Boxer, Langmuir 20, 11092 (2004).

  22. 22

    J. Schmitt, B. Danner, and T. M. Bayerl, Langmuir 17, 244 (2001); L. F. Zhang and S. Granick, J. Chem. Phys. 123, 211104 (2005); M. Hetzer, S. Heinz, S. Grage, and T. M. Bayerl, Langmuir 14, 982 (1998); R. Merkel, E. Sackmann, and E. Evans, J. Phys. 50, 1535 (1989).

  23. 23

    Z. V. Feng, T. A. Spurlin, and A. A. Gewirth, Biophys. J. 88, 2154 (2004); D. Keller, N. B. Larsen, I. M. Moller, and O. G. Mouritsen, Phys. Rev. Lett. 94, 025701 (2005); F. Tokumasu, A. J. Jin, and J. A. Dvorak, J. Electron Microsc. 51, 1 (2002).

  24. 24

    M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000); E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000); A. Graneli, J. Rydstrom, B. Kasemo, and F. Hook, Langmuir 19, 842 (2003).

  25. 25

    E. K. Sinner and W. Knoll, Curr. Opin. Chem. Biol. 5, 705 (2001); J. Spinke, J. Yang, H. Wolf, M. Liley, H. Ringsdorf, and W. Knoll, Biophys. J. 63, 1667 (1992); S. L. McArthur, M. W. Halter, V. Vogel, and D. G. Castner, Langmuir 19, 8316 (2003).

  26. 26

    M. Geissler and Y. N. Xia, Adv. Mater. 16, 1249 (2004).

  27. 27

    R. K. Smith, P. A. Lewis, and P. S. Weiss, Prog. Surf. Sci. 75, 1 (2004).

  28. 28

    A. T. A. Jenkins, R. J. Bushby, S. D. Evans, W. Knoll, A. Offenhausser, and S. D. Ogier, Langmuir 18, 3176 (2002); A. T. A. Jenkins, N. Boden, R. J. Bushby, S. D. Evans, P. F. Knowles, R. E. Miles, S. D. Ogier, H. Schonherr, and G. J. Vancso, J. Am. Chem. Soc. 121, 5274 (1999); X. J. Han, S. N. D. Pradeep, K. Critchley, K. Sheikh, R. J. Bushby, and S. D. Evans, Chem. Eur. J. 13, 7957 (2007); X. J. Han, K. Critchley, L. X. Zhang, S. N. D. Pradeep, R. J. Bushby, and S. D. Evans, Langmuir 23, 1354 (2007); C. Duschl, M. Liley, G. Corradin, and H. Vogel, Biophys. J. 67, 1229 (1994).

  29. 29

    A. L. Plant, M. Gueguetchkeri, and W. Yap, Biophys. J. 67, 1126 (1994).

  30. 30

    A. L. Plant, Langmuir 15, 5128 (1999).

  31. 31

    A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, Langmuir 15, 5369 (1999).

  32. 32

    J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105, 1103 (2005).

  33. 33

    Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).

  34. 34

    R. Lipowsky and U. Seifert, Mol. Cryst. Liq. Cryst. 202, 17 (1991); U. Seifert and R. Lipowsky, Phys. Rev. A 42, 4768 (1990); M. Twardowski and R. G. Nuzzo, Langmuir 19, 9781 (2003).

  35. 35

    V. I. Silin, H. Wieder, J. T. Woodward, G. Valincius, A. Offenhausser, and A. L. Plant, J. Am. Chem. Soc. 124, 14676 (2002).

  36. 36

    E. Reimhult, F. Hook, and B. Kasemo, Langmuir 19, 1681 (2003).

  37. 37

    J. Raedler, H. Strey, and E. Sackmann, Langmuir 11, 4539 (1995); J. B. Hubbard, V. Silin, and A. L. Plant, Biophys. Chem. 75, 163 (1998).

  38. 38

    P. Frantz and S. Granick, Langmuir 8, 1176 (1992).

  39. 39

    M. Ahlers, W. Muller, A. Reichert, H. Ringsdorf, and J. Venzmer, Angew. Chem. Int. Ed. Engl. 29, 1269 (1990).

  40. 40

    P. S. Swain and D. Andelman, Langmuir 15, 8902 (1999); P. S. Swain and D. Andelman, Phys. Rev. E 63, 051911 (2001).

  41. 41

    J. M. Calvert, M. S. Chen, C. S. Dulcey, J. H. Georger, M. C. Peckerar, J. M. Schnur, and P. E. Schoen, J. Electrochem. Soc. 139, 1677 (1992).

  42. 42

    C. S. Dulcey, J. H. Georger, V. Krauthamer, D. A. Stenger, T. L. Fare, and J. M. Calvert, Science 252, 551 (1991).

  43. 43

    J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, Nature (London) 360, 719 (1992); A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, J. Phys. Chem. 98, 7577 (1994).

  44. 44

    G. P. Lopez, H. A. Biebuyck, C. D. Frisbie, and G. M. Whitesides, Science 260, 647 (1993).

  45. 45

    D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).

  46. 46

    J. O. Radler, S. Radiman, A. Devallera, and C. Toprakcioglu, Physica B 156–157, 398 (1989).

  47. 47

    M. Deserno, J. Phys.: Condens. Matter 16, S2061 (2004).

  48. 48

    J. Zimmerberg and L. V. Chernomordik, Adv. Drug Deliv. Rev. 38, 197 (1999); F. S. Cohen and G. B. Melikyan, J. Membr. Biol. 199, 1 (2004); H. Garoff, R. Hewson, and D. J. E. Opstelten, Microbiol. Mol. Biol. Rev. 62, 1171 (1998).

  49. 49

    A. Boulbitch, Europhys. Lett. 59, 910 (2002); C. Tordeux and J. B. Fournier, Langmuir 16, 2991 (2000).

  50. 50

    I. Koltover, J. O. Radler, and C. R. Safinya, Phys. Rev. Lett. 82, 1991 (1999); C. Dietrich, M. Angelova, and B. Pouligny, J. Phys. II 7, 1651 (1997).

  51. 51

    U. Seifert, Adv. Phys. 46, 13 (1997).

  52. 52

    M. B. Schneider, J. T. Jenkins, and W. W. Webb, J. Phys. 45, 1457 (1984).

  53. 53

    P. Girard, J. Prost, and P. Bassereau, Phys. Rev. Lett. 94, 088102 (2005);

  54. 54

    J. D. Cortese, B. Schwab, C. Frieden, and E. L. Elson, Proc. Natl. Acad. Sci. U.S.A. 86, 5773 (1989).

  55. 54

    S. S. Dixit, A. Szmodis, and A. N. Parikh, ChemPhysChem 7, 1678 (2006).

  56. 55

    M. Deserno and T. Bickel, Europhys. Lett. 62, 767 (2003).

  57. 56

    T. H. Yang, C. K. Yee, M. L. Amweg, S. Singh, E. L. Kendall, A. M. Dattelbaum, A. P. Shreve, C. J. Brinker, and A. N. Parikh, Nano Lett. 7, 2446 (2007).

  58. 57

    G. A. Woolley and B. A. Wallace, J. Membr. Biol. 129, 109 (1992).

  59. 58

    G. Wirnsberger, B. J. Scott, and G. D. Stucky, Chem. Commun. Cambridge 2001, 119 (2001).

  60. 59

    A. M. Dattelbaum, M. L. Amweg, L. E. Ecke, C. K. Yee, A. P. Shreve, and A. N. Parikh, Nano Lett. 3, 719 (2003).

  61. 60

    M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2006); R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss, and G. M. Whitesides, Science 280, 2089 (1998).

  62. 61

    J. T. Groves, Annu. Rev. Phys. Chem. 58, 697 (2007).

  63. 62

    R. Parthasarathy and J. T. Groves, Soft Matter 3, 24 (2007).

  64. 63

    R. Parthasarathy, C. H. Yu, and J. T. Groves, Langmuir 22, 5095 (2006).

  65. 64

    J. Huang, M. Juszkiewicz, W. H. de Jeu, E. Cerda, T. Emrick, N. Menon, and T. P. Russell, Science 317, 650 (2007); E. Cerda and L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003); N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, Appl. Phys. Lett. 75, 2557 (1999).

  66. 65

    K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, Nat. Mater. 4, 293 (2005).

  67. 66

    K. Efimenko, W. E. Wallace, and J. Genzer, J. Colloid Interface Sci. 254, 306 (2002).

  68. 67

    N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature (London) 393, 146 (1998).

  69. 68

    N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, Appl. Phys. Lett. 75, 2557 (1999).

  70. 69

    B. Sanii, A. M. Smith, R. Butti, A. M. Brozell, and A. N. Parikh submitted.

  71. 70

    V. L. Colvin, MRS Bull. 26, 637 2001); P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999); A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Nature (London) 405, 437 (2000).

  72. 71

    Y. D. Yin, Y. Lu, B. Gates, and Y. N. Xia, J. Am. Chem. Soc. 123, 8718 (2001).

  73. 72

    S. H. Park, D. Qin, and Y. Xia, Adv. Mater. 10, 1028 (1998).

  74. 73

    A. M. Brozell, M. A. Muha, and A. N. Parikh, Langmuir 21, 11588 (2005).

  75. 74

    S. C. Glotzer and M. J. Solomon, Nat. Mater. 6, 557 (2007); H. Y. Chen, J. M. Rouillard, E. Gulari, and J. Lahann, Proc. Natl. Acad. Sci. U.S.A. 104, 11173 (2007); S. Venkatesh, P. Jiang, and B. Jiang, Langmuir 23, 8231 (2007).

  76. 75

    A. M. Brozell, M. A. Muha, B. Sanii, and A. N. Parikh, J. Am. Chem. Soc. 128, 62 (2006).

  77. 76

    M. Hamm and M. M. Kozlov, Eur. Phys. J. E 3, 323 (2000); T. R. Weikl, D. Andelman, S. Komura, and R. Lipowsky, ibid. 8, 59 (2002).

  78. 77

    A. Boulbitch, Europhys. Lett. 59, 910 (2002).

  79. 78

    T. Y. Yoon, C. Jeong, S. W. Lee, J. H. Kim, M. C. Choi, S. J. Kim, M. W. Kim, and S. D. Lee, Nat. Mater. 5, 281 (2006).

  80. 79

    H. T. McMahon and J. L. Gallop, Nature (London) 438, 590 (2005); J. Zimmerberg and M. M. Kozlov, Nat. Rev. Mol. Cell Biol. 7, 9 (2006).

  81. 80

    V. Vogel and M. Sheetz, Nat. Rev. Mol. Cell Biol. 7, 265 (2006).

  82. 81

    I. R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006).

  83. 82

    T. J. McIntosh, Chem. Phys. Lipids 81, 117 (1996); L. Chernomordik, ibid. 81, 203 (1996); S. M. Gruner, Proc. Natl. Acad. Sci. U.S.A. 82, 3665 (1985).

  84. 83

    C. Hamai, T. L. Yang, S. Kataoka, P. S. Cremer, and S. M. Musser, Biophys. J. 90, 1241 (2006).

  85. 84

    R. M. Epand, Biochim. Biophys. Acta 1376, 353 (1998); B. deKruijff, Nature (London) 386, 129 (1997); I. Simidjiev, S. Stoylova, H. Amenitsch, T. Javorfi, L. Mustardy, P. Laggner, A. Holzenburg, and G. Garab, Proc. Natl. Acad. Sci. U.S.A. 97, 1473 (2000); K. C. Huang, R. Mukhopadhyay, and N. S. Wingreen, PLoS Comput. Biol. 2, e151 (2006).

  86. 85

    M. C. Giocondi, L. Pacheco, P. E. Milhiet, and C. Le Grimellec, Ultramicroscopy 86, 151 (2001); T. Heimburg, Biophys. J. 78, 1154 (2000).

  87. 86

    W. B. Huttner and J. Zimmerberg, Curr. Opin. Cell Biol. 13, 478 (2001).

  88. 87

    W. H. Binder, V. Barragan, and F. M. Menger, Angew. Chem. Int. Ed. 42, 5802 (2003); K. Simons and E. Ikonen, Nature (London) 387, 569 (1997).

  89. 88

    K. Simons and W. L. C. Vaz, Annu. Rev. Biophys. Biomol. Struct. 33, 269 (2004).

  90. 89

    S. A. Akimov, P. I. Kuzmin, J. Zimmerberg, and F. S. Cohen, Phys. Rev. E 75, 011919 (2007).

  91. 90

    A. G. Lee, Curr. Biol. 10, R377 (2000).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article