Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

S-layer stabilized lipid membranes (Review)

Article metrics

Abstract

The present review focuses on a unique bio-molecular construction kit based on surface-layer S-layer proteins as building blocks and patterning elements, but also major classes of biological molecules such as lipids, membrane-active peptides and membrane proteins, and glycans for the design of functional supported lipid membranes. The biomimetic approach copying the supramolecular building principle of most archaeal cell envelopes merely composed of a plasma membrane and a closely associated S-layer lattice has resulted in robust and fluid lipid membranes. Most importantly, S-layer supported lipid membranes spanning an aperture or generated on solid and porous substrates constitute highly interesting model membranes for the reconstitution of responsive transmembrane proteins and membrane-active peptides. This is of particular challenge as one-third of all proteins are membrane proteins such as pore-forming proteins, ion channels, and receptors. S-layer supported lipid membranes are seen as one of the most innovative strategies in membrane protein-based nanobiotechnology with potential applications that range from pharmaceutical high-throughput drug screening over lipid chips to the detection of biological warfare agents.

References

  1. 1

    M. Gerstein and H. Hegyi, FEMS Microbiol. Rev. 22, 277 (1998).

  2. 2

    S. Galdiero, M. Galdiero, and C. Pedone, Curr. Protein Pept. Sci. 8, 63 (2007).

  3. 3

    B. Viviani, F. Gardoni, and M. Marinovich, Int. Rev. Neurobiol. 82, 247 (2007).

  4. 4

    C. Ellis and A. Smith, Nat. Rev. Drug Discovery 3, 237 (2004).

  5. 5

    K. Henrick, Z. Feng, W. F. Bluhm, D. Dimitropoulos, J. F. Doreleijers, S. Dutta, J. L. Flippen-Anderson, J. Ionides, C. Kamada, E. Krissinel, C. L. Lawson, J. L. Markley, H. Nakamura, R. Newman, Y. Shimizu, J. Swaminathan, S. Velankar, J. Ory, E. L. Ulrich, W. Vranken, J. Westbrook, R. Yamashita, H. Yang, J. Young, M. Yousufuddin, and H. M. Berman, Nucleic Acids Res. 36, D426 (2007).

  6. 6

    P. Raman, V. Cherezov, and M. Caffrey, Cell. Mol. Life Sci. 63, 36 (2006).

  7. 7

    J. H. Hurley, Chem. Biol. 10, 2 (2003).

  8. 8

    J. Torres, T. J. Stevens, and M. Samso, Trends Biochem. Sci. 28, 137 (2003).

  9. 9

    U. B. Sleytr, Nature (London) 257, 400 (1975).

  10. 10

    U. B. Sleytr, Int. Rev. Cytol. 53, 1 (1978).

  11. 11

    U. B. Sleytr and T. J. Beveridge, Trends Microbiol. 7, 253 (1999).

  12. 12

    B. Schuster and U. B. Sleytr, Curr. Nanosci. 2, 143 (2006).

  13. 13

    B. Schuster and U. B. Sleytr, Rev. Mol. Biotechnol. 74, 233 (2000).

  14. 14

    B. Schuster, P. C. Gufler, D. Pum, and U. B. Sleytr, IEEE Trans. Nanobiosci. 3, 16 (2004).

  15. 15

    U. B. Sleytr, P. Messner, D. Pum, and M. Sára, Angew. Chem. Int. Ed. 38, 1034 (1999).

  16. 16

    U. B. Sleytr, P. Messner, D. Pum, and M. Sára eds., Crystalline Bacterial Cell Surface Layers Springer-Verlag, Berlin, 1988, pp. 1, 193.

  17. 17

    U. B. Sleytr, M. Sára, D. Pum, B. Schuster, P. Messner, and C. Schäffer, Biopolymers Wiley-VCH, Weinheim, (2003)., Vol. 7, pp. 285, 338.

  18. 18

    M. Sára and U. B. Sleytr, J. Bacteriol. 182, 859 (2000).

  19. 19

    C. Schäffer and P. Messner, Glycobiology 14, 31R (2004).

  20. 20

    H. König, Can. J. Microbiol. 34, 395 (1988).

  21. 21

    O. Kandler, Zbl. Bakt. Hyg. I. Abt. Orig. C 3, 149 (1982).

  22. 22

    U. B. Sleytr, P. Messner, D. Pum, and M. Sára eds., Molecular Biology Intelligence Unit Academic, Landes, Austin, TX, 1996, pp. 1, 230.

  23. 23

    W. Baumeister and G. Lembcke, J. Bioenerg. Biomembr. 24, 567 (1992).

  24. 24

    J. Mayr, A. Lupas, J. Kellermann, C. Eckerskorn, W. Baumeister, and J. Peters, Curr. Biol. 6, 739 (1996).

  25. 25

    S. Hovmöller, A. Sjögren, and D. N. Wang, Prog. Biophys. Mol. Biol. 51, 131 (1988).

  26. 26

    W. Baumeister, I. Wildhaber, and B. M. Phipps, J. Can. Microbiol. 35, 215 (1989).

  27. 27

    D. Pum, M. Sàra, B. Schuster, and U. B. Sleytr, Nanotechnology: Science and Computation Springer-Verlag, Berlin, 2006, pp. 277, 290.

  28. 28

    T. J. Beveridge, Curr. Opin. Struct. Biol. 4, 202 (1994).

  29. 29

    P. Messner and U. B. Sleytr, Adv. Microb. Physiol. 33, 213 (1992).

  30. 30

    U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, Supramolecular Polymers, 2nd ed. CRC, Taylor & Francis, Boca Raton, FL, 2005, pp. 583, 616.

  31. 31

    U. B. Sleytr, E. Egelseer, N. Ilk, D. Pum, and B. Schuster, FEBS J. 274, 323 (2007).

  32. 32

    U. B. Sleytr, C. Huber, N. Ilk, D. Pum, B. Schuster, and E. Egelseer, FEMS Microbiol. Lett. 267, 131 (2007).

  33. 33

    B. Wetzer, A. Pfandler, E. Györvary, D. Pum, M. Lösche, and U. B. Sleytr, Langmuir 14, 6899 (1998).

  34. 34

    M. Weygand, B. Wetzer, D. Pum, U. B. Sleytr, N. Cuvillier, K. Kjaer, P. B. Howes, and M. Lösche, Biophys. J. 76, 458 (1999).

  35. 35

    J. Ferner-Ortner, C. Mader, N. Ilk, U. B. Sleytr, and E. M. Egelseer, J. Bacteriol. 189, 7154 (2007).

  36. 36

    Sleytr, M. Sára, C. Mader, B. Schuster, and F. M. Unger, Patent No. A 732/2000 (26 April 2000).

  37. 37

    D. Pum and U. B. Sleytr, Thin Solid Films 244, 882 (1994).

  38. 38

    K. O. Stetter, Extremophiles 10, 357 (2006).

  39. 39

    U. B. Sleytr and P. Messner, Encyclopedia of Microbiology Academic, San Diego, CA, 2000, Vol. 1, pp. 889, 906.

  40. 40

    K. Kashefi and D. R. Lovely, Science 301, 934 (2003).

  41. 41

    B. Schuster, Nano Biotechnology 1, 153 (2005).

  42. 42

    B. Schuster, D. Pum, M. Sàra, and U. B. Sleytr, Mini Rev. Med. Chem. 6, 909 (2006).

  43. 43

    M. De Rosa, Thin Solid Films 284–285, 13 (1996).

  44. 44

    B. Schuster, D. Pum, and U. B. Sleytr, Biochim. Biophys. Acta 1369, 51 (1998).

  45. 45

    M. J. Hanford and T. L. Peeples, Appl. Biochem. Biotechnol. 97, 45 (2002).

  46. 46

    C. Strobl, L. Six, K. Heckmann, B. Henkel, and K. Ring, Z. Naturforsch. C 40c, 219 (1984).

  47. 47

    A. Diederich, C. Hödl, D. Pum, U. B. Sleytr, and M. Lösche, Colloids Surf., B 6, 335 (1996).

  48. 48

    M. Hoppert, Microscopic Techniques in Biotechnology Wiley-VCH, Weinheim, (2003).

  49. 49

    D. Pum, M. Weinhandl, C. Hödl, and U. B. Sleytr, J. Bacteriol. 175, 2762 (1993).

  50. 50

    A. W. Robards and U. B. Sleytr, Practical Methods in Electron Microscopy Elsevier, Amsterdam, 1985, Vol. 10, pp. 293, 300.

  51. 51

    E. Györvary, O. Stein, D. Pum, and U. B. Sleytr, J. Microsc. 212, 300 (2003).

  52. 52

    M. A. Cooper and V. T. Singleton, J. Mol. Recognit. 20, 154 (2007).

  53. 53

    B. Nguyen, F. A. Tanious, and W. D. Wilson, Methods 42, 150 (2007).

  54. 54

    K. S. Phillips and Q. Cheng, Anal. Bioanal. Chem. 387, 1831 (2007).

  55. 55

    M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

  56. 56

    F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Proc. Natl. Acad. Sci. U.S.A. 95, 12271 (1998).

  57. 57

    F. Höök and B. Kasemo, Piezoelectric Sensors Springer Verlag, Berlin, 2006, pp. 425, 448.

  58. 58

    D. Johannsmann, Piezoelectric Sensors (Springer Verlag, Berlin, 2006), pp. 49, 110.

  59. 59

    M. Pisecker, Masterś thesis, University for Natural Resources and Applied Life Sciences, Vienna, (2005).

  60. 60

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

  61. 61

    C. Larsson, M. Rodahl, and F. Höök, Anal. Chem. 75, 5080 (2003).

  62. 62

    H. Fischer, I. Polikarpov, and A. F. Craievich, Protein Sci. 13, 2825 (2004).

  63. 63

    B. Schuster, P. C. Gufler, D. Pum, and U. B. Sleytr, Langmuir 19, 3393 (2003).

  64. 64

    F. J. Nomellini, S. Küpcü, U. B. Sleytr, and J. Smit, J. Bacteriol. 179, 6349 (1997).

  65. 65

    E. Smit, F. Oling, R. Demel, B. Martinez, and P. H. Pouwels, J. Mol. Biol. 305, 245 (2001).

  66. 66

    M. Weygand, M. Schalke, P. B. Howes, K. Kjaer, J. Friedmann, B. Wetzer, D. Pum, U. B. Sleytr, and M. Lösche, J. Mater. Chem. 10, 141 (2000).

  67. 67

    M. Weygand, K. Kjaer, P. B. Howes, B. Wetzer, D. Pum, U. B. Sleytr, and M. Lösche, J. Phys. Chem. B 106, 5793 (2002).

  68. 68

    S. Küpcü, M. Sára, and U. B. Sleytr, Biochim. Biophys. Acta 1235, 263 (1995).

  69. 69

    B. Schuster, D. Pum, M. Sara, O. Braha, H. Bayley, and U. B. Sleytr, Langmuir 17, 499 (2001).

  70. 70

    R. Hirn, B. Schuster, U. B. Sleytr, and T. M. Bayerl, Biophys. J. 77, 2066 (1999).

  71. 71

    U. B. Sleytr, E. Egelseer, D. Pum, and B. Schuster, NanoBiotechnology: Concepts, Methods and Perspectives Wiley-VCH, Weinheim, (2003)., pp. 77, 92.

  72. 72

    B. Schuster, A. Diederich, G. Bähr, U. B. Sleytr, and M. Winterhalter, Eur. Biophys. J. 28, 583 (1999).

  73. 73

    E. Györvary, B. Wetzer, U. B. Sleytr, A. Sinner, A. Offenhäusser, and W. Knoll, Langmuir 15, 1337 (1999).

  74. 74

    B. Schuster and U. B. Sleytr, Biochim. Biophys. Acta 1563, 29 (2002).

  75. 75

    P. C. Gufler, D. Pum, U. B. Sleytr, and B. Schuster, Biochim. Biophys. Acta 1661, 154 (2004).

  76. 76

    M. Sára and U. B. Sleytr, J. Bacteriol. 169, 2804 (1987).

  77. 77

    S. Weigert and M. Sára, J. Membr. Sci. 106, 147 (1995).

  78. 78

    S. Weigert and M. Sára, J. Membr. Sci. 121, 185 (1996).

  79. 79

    B. Schuster, S. Weigert, D. Pum, M. Sára, and U. B. Sleytr, Langmuir 19, 2392 (2003).

  80. 80

    S. Bhakdi and J. Tranum-Jensen, Microbiol. Rev. 55, 733 (1991).

  81. 81

    B. Schuster, D. Pum, O. Braha, H. Bayley, and U. B. Sleytr, Biochim. Biophys. Acta 1370, 280 (1998).

  82. 82

    B. Schuster and U. B. Sleytr, Bioelectrochemistry 55, 5 (2002).

  83. 83

    U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, Prog. Surf. Sci. 68, 231 (2001).

  84. 84

    U. B. Sleytr, E. Györvary, and D. Pum, Prog. Org. Coat. 47, 279 (2003).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article