Skip to main content

Journal for Biophysical Chemistry

S-layer stabilized lipid membranes (Review)

Abstract

The present review focuses on a unique bio-molecular construction kit based on surface-layer S-layer proteins as building blocks and patterning elements, but also major classes of biological molecules such as lipids, membrane-active peptides and membrane proteins, and glycans for the design of functional supported lipid membranes. The biomimetic approach copying the supramolecular building principle of most archaeal cell envelopes merely composed of a plasma membrane and a closely associated S-layer lattice has resulted in robust and fluid lipid membranes. Most importantly, S-layer supported lipid membranes spanning an aperture or generated on solid and porous substrates constitute highly interesting model membranes for the reconstitution of responsive transmembrane proteins and membrane-active peptides. This is of particular challenge as one-third of all proteins are membrane proteins such as pore-forming proteins, ion channels, and receptors. S-layer supported lipid membranes are seen as one of the most innovative strategies in membrane protein-based nanobiotechnology with potential applications that range from pharmaceutical high-throughput drug screening over lipid chips to the detection of biological warfare agents.

References

  1. M. Gerstein and H. Hegyi, FEMS Microbiol. Rev. 22, 277 (1998).

    Article  CAS  Google Scholar 

  2. S. Galdiero, M. Galdiero, and C. Pedone, Curr. Protein Pept. Sci. 8, 63 (2007).

    Article  CAS  Google Scholar 

  3. B. Viviani, F. Gardoni, and M. Marinovich, Int. Rev. Neurobiol. 82, 247 (2007).

    Article  CAS  Google Scholar 

  4. C. Ellis and A. Smith, Nat. Rev. Drug Discovery 3, 237 (2004).

    Google Scholar 

  5. K. Henrick, Z. Feng, W. F. Bluhm, D. Dimitropoulos, J. F. Doreleijers, S. Dutta, J. L. Flippen-Anderson, J. Ionides, C. Kamada, E. Krissinel, C. L. Lawson, J. L. Markley, H. Nakamura, R. Newman, Y. Shimizu, J. Swaminathan, S. Velankar, J. Ory, E. L. Ulrich, W. Vranken, J. Westbrook, R. Yamashita, H. Yang, J. Young, M. Yousufuddin, and H. M. Berman, Nucleic Acids Res. 36, D426 (2007).

    Article  Google Scholar 

  6. P. Raman, V. Cherezov, and M. Caffrey, Cell. Mol. Life Sci. 63, 36 (2006).

    Article  CAS  Google Scholar 

  7. J. H. Hurley, Chem. Biol. 10, 2 (2003).

    Article  CAS  Google Scholar 

  8. J. Torres, T. J. Stevens, and M. Samso, Trends Biochem. Sci. 28, 137 (2003).

    Article  CAS  Google Scholar 

  9. U. B. Sleytr, Nature (London) 257, 400 (1975).

    Article  CAS  Google Scholar 

  10. U. B. Sleytr, Int. Rev. Cytol. 53, 1 (1978).

    Article  CAS  Google Scholar 

  11. U. B. Sleytr and T. J. Beveridge, Trends Microbiol. 7, 253 (1999).

    Article  CAS  Google Scholar 

  12. B. Schuster and U. B. Sleytr, Curr. Nanosci. 2, 143 (2006).

    Article  CAS  Google Scholar 

  13. B. Schuster and U. B. Sleytr, Rev. Mol. Biotechnol. 74, 233 (2000).

    Article  CAS  Google Scholar 

  14. B. Schuster, P. C. Gufler, D. Pum, and U. B. Sleytr, IEEE Trans. Nanobiosci. 3, 16 (2004).

    Article  Google Scholar 

  15. U. B. Sleytr, P. Messner, D. Pum, and M. Sára, Angew. Chem. Int. Ed. 38, 1034 (1999).

    Article  CAS  Google Scholar 

  16. U. B. Sleytr, P. Messner, D. Pum, and M. Sára eds., Crystalline Bacterial Cell Surface Layers Springer-Verlag, Berlin, 1988, pp. 1, 193.

    Book  Google Scholar 

  17. U. B. Sleytr, M. Sára, D. Pum, B. Schuster, P. Messner, and C. Schäffer, Biopolymers Wiley-VCH, Weinheim, (2003)., Vol. 7, pp. 285, 338.

    Google Scholar 

  18. M. Sára and U. B. Sleytr, J. Bacteriol. 182, 859 (2000).

    Article  Google Scholar 

  19. C. Schäffer and P. Messner, Glycobiology 14, 31R (2004).

    Article  Google Scholar 

  20. H. König, Can. J. Microbiol. 34, 395 (1988).

    Article  Google Scholar 

  21. O. Kandler, Zbl. Bakt. Hyg. I. Abt. Orig. C 3, 149 (1982).

    CAS  Google Scholar 

  22. U. B. Sleytr, P. Messner, D. Pum, and M. Sára eds., Molecular Biology Intelligence Unit Academic, Landes, Austin, TX, 1996, pp. 1, 230.

    Google Scholar 

  23. W. Baumeister and G. Lembcke, J. Bioenerg. Biomembr. 24, 567 (1992).

    Article  CAS  Google Scholar 

  24. J. Mayr, A. Lupas, J. Kellermann, C. Eckerskorn, W. Baumeister, and J. Peters, Curr. Biol. 6, 739 (1996).

    Article  CAS  Google Scholar 

  25. S. Hovmöller, A. Sjögren, and D. N. Wang, Prog. Biophys. Mol. Biol. 51, 131 (1988).

    Article  Google Scholar 

  26. W. Baumeister, I. Wildhaber, and B. M. Phipps, J. Can. Microbiol. 35, 215 (1989).

    Article  CAS  Google Scholar 

  27. D. Pum, M. Sàra, B. Schuster, and U. B. Sleytr, Nanotechnology: Science and Computation Springer-Verlag, Berlin, 2006, pp. 277, 290.

    Book  Google Scholar 

  28. T. J. Beveridge, Curr. Opin. Struct. Biol. 4, 202 (1994).

    Google Scholar 

  29. P. Messner and U. B. Sleytr, Adv. Microb. Physiol. 33, 213 (1992).

    Article  CAS  Google Scholar 

  30. U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, Supramolecular Polymers, 2nd ed. CRC, Taylor & Francis, Boca Raton, FL, 2005, pp. 583, 616.

    Google Scholar 

  31. U. B. Sleytr, E. Egelseer, N. Ilk, D. Pum, and B. Schuster, FEBS J. 274, 323 (2007).

    Article  CAS  Google Scholar 

  32. U. B. Sleytr, C. Huber, N. Ilk, D. Pum, B. Schuster, and E. Egelseer, FEMS Microbiol. Lett. 267, 131 (2007).

    Article  CAS  Google Scholar 

  33. B. Wetzer, A. Pfandler, E. Györvary, D. Pum, M. Lösche, and U. B. Sleytr, Langmuir 14, 6899 (1998).

    Article  CAS  Google Scholar 

  34. M. Weygand, B. Wetzer, D. Pum, U. B. Sleytr, N. Cuvillier, K. Kjaer, P. B. Howes, and M. Lösche, Biophys. J. 76, 458 (1999).

    Article  CAS  Google Scholar 

  35. J. Ferner-Ortner, C. Mader, N. Ilk, U. B. Sleytr, and E. M. Egelseer, J. Bacteriol. 189, 7154 (2007).

    Article  CAS  Google Scholar 

  36. Sleytr, M. Sára, C. Mader, B. Schuster, and F. M. Unger, Patent No. A 732/2000 (26 April 2000).

  37. D. Pum and U. B. Sleytr, Thin Solid Films 244, 882 (1994).

    Article  CAS  Google Scholar 

  38. K. O. Stetter, Extremophiles 10, 357 (2006).

    Article  Google Scholar 

  39. U. B. Sleytr and P. Messner, Encyclopedia of Microbiology Academic, San Diego, CA, 2000, Vol. 1, pp. 889, 906.

    Google Scholar 

  40. K. Kashefi and D. R. Lovely, Science 301, 934 (2003).

    Article  CAS  Google Scholar 

  41. B. Schuster, Nano Biotechnology 1, 153 (2005).

    CAS  Google Scholar 

  42. B. Schuster, D. Pum, M. Sàra, and U. B. Sleytr, Mini Rev. Med. Chem. 6, 909 (2006).

    Article  CAS  Google Scholar 

  43. M. De Rosa, Thin Solid Films 284–285, 13 (1996).

    Google Scholar 

  44. B. Schuster, D. Pum, and U. B. Sleytr, Biochim. Biophys. Acta 1369, 51 (1998).

    Article  CAS  Google Scholar 

  45. M. J. Hanford and T. L. Peeples, Appl. Biochem. Biotechnol. 97, 45 (2002).

    Article  CAS  Google Scholar 

  46. C. Strobl, L. Six, K. Heckmann, B. Henkel, and K. Ring, Z. Naturforsch. C 40c, 219 (1984).

    Google Scholar 

  47. A. Diederich, C. Hödl, D. Pum, U. B. Sleytr, and M. Lösche, Colloids Surf., B 6, 335 (1996).

    Article  CAS  Google Scholar 

  48. M. Hoppert, Microscopic Techniques in Biotechnology Wiley-VCH, Weinheim, (2003).

    Book  Google Scholar 

  49. D. Pum, M. Weinhandl, C. Hödl, and U. B. Sleytr, J. Bacteriol. 175, 2762 (1993).

    CAS  Google Scholar 

  50. A. W. Robards and U. B. Sleytr, Practical Methods in Electron Microscopy Elsevier, Amsterdam, 1985, Vol. 10, pp. 293, 300.

    Google Scholar 

  51. E. Györvary, O. Stein, D. Pum, and U. B. Sleytr, J. Microsc. 212, 300 (2003).

    Article  Google Scholar 

  52. M. A. Cooper and V. T. Singleton, J. Mol. Recognit. 20, 154 (2007).

    Article  CAS  Google Scholar 

  53. B. Nguyen, F. A. Tanious, and W. D. Wilson, Methods 42, 150 (2007).

    Article  CAS  Google Scholar 

  54. K. S. Phillips and Q. Cheng, Anal. Bioanal. Chem. 387, 1831 (2007).

    Article  CAS  Google Scholar 

  55. M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

    Article  CAS  Google Scholar 

  56. F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Proc. Natl. Acad. Sci. U.S.A. 95, 12271 (1998).

    Article  Google Scholar 

  57. F. Höök and B. Kasemo, Piezoelectric Sensors Springer Verlag, Berlin, 2006, pp. 425, 448.

    Google Scholar 

  58. D. Johannsmann, Piezoelectric Sensors (Springer Verlag, Berlin, 2006), pp. 49, 110.

    Google Scholar 

  59. M. Pisecker, MasterÅ› thesis, University for Natural Resources and Applied Life Sciences, Vienna, (2005).

    Google Scholar 

  60. G. Sauerbrey, Z. Phys. 155, 206 (1959).

    Article  CAS  Google Scholar 

  61. C. Larsson, M. Rodahl, and F. Höök, Anal. Chem. 75, 5080 (2003).

    Article  CAS  Google Scholar 

  62. H. Fischer, I. Polikarpov, and A. F. Craievich, Protein Sci. 13, 2825 (2004).

    Article  CAS  Google Scholar 

  63. B. Schuster, P. C. Gufler, D. Pum, and U. B. Sleytr, Langmuir 19, 3393 (2003).

    Article  CAS  Google Scholar 

  64. F. J. Nomellini, S. Küpcü, U. B. Sleytr, and J. Smit, J. Bacteriol. 179, 6349 (1997).

    CAS  Google Scholar 

  65. E. Smit, F. Oling, R. Demel, B. Martinez, and P. H. Pouwels, J. Mol. Biol. 305, 245 (2001).

    Article  CAS  Google Scholar 

  66. M. Weygand, M. Schalke, P. B. Howes, K. Kjaer, J. Friedmann, B. Wetzer, D. Pum, U. B. Sleytr, and M. Lösche, J. Mater. Chem. 10, 141 (2000).

    Article  CAS  Google Scholar 

  67. M. Weygand, K. Kjaer, P. B. Howes, B. Wetzer, D. Pum, U. B. Sleytr, and M. Lösche, J. Phys. Chem. B 106, 5793 (2002).

    Article  CAS  Google Scholar 

  68. S. Küpcü, M. Sára, and U. B. Sleytr, Biochim. Biophys. Acta 1235, 263 (1995).

    Article  Google Scholar 

  69. B. Schuster, D. Pum, M. Sara, O. Braha, H. Bayley, and U. B. Sleytr, Langmuir 17, 499 (2001).

    Article  CAS  Google Scholar 

  70. R. Hirn, B. Schuster, U. B. Sleytr, and T. M. Bayerl, Biophys. J. 77, 2066 (1999).

    Article  CAS  Google Scholar 

  71. U. B. Sleytr, E. Egelseer, D. Pum, and B. Schuster, NanoBiotechnology: Concepts, Methods and Perspectives Wiley-VCH, Weinheim, (2003)., pp. 77, 92.

    Google Scholar 

  72. B. Schuster, A. Diederich, G. Bähr, U. B. Sleytr, and M. Winterhalter, Eur. Biophys. J. 28, 583 (1999).

    Article  CAS  Google Scholar 

  73. E. Györvary, B. Wetzer, U. B. Sleytr, A. Sinner, A. Offenhäusser, and W. Knoll, Langmuir 15, 1337 (1999).

    Article  Google Scholar 

  74. B. Schuster and U. B. Sleytr, Biochim. Biophys. Acta 1563, 29 (2002).

    Article  CAS  Google Scholar 

  75. P. C. Gufler, D. Pum, U. B. Sleytr, and B. Schuster, Biochim. Biophys. Acta 1661, 154 (2004).

    Article  CAS  Google Scholar 

  76. M. Sára and U. B. Sleytr, J. Bacteriol. 169, 2804 (1987).

    Google Scholar 

  77. S. Weigert and M. Sára, J. Membr. Sci. 106, 147 (1995).

    Article  CAS  Google Scholar 

  78. S. Weigert and M. Sára, J. Membr. Sci. 121, 185 (1996).

    Article  CAS  Google Scholar 

  79. B. Schuster, S. Weigert, D. Pum, M. Sára, and U. B. Sleytr, Langmuir 19, 2392 (2003).

    Article  CAS  Google Scholar 

  80. S. Bhakdi and J. Tranum-Jensen, Microbiol. Rev. 55, 733 (1991).

    CAS  Google Scholar 

  81. B. Schuster, D. Pum, O. Braha, H. Bayley, and U. B. Sleytr, Biochim. Biophys. Acta 1370, 280 (1998).

    Article  CAS  Google Scholar 

  82. B. Schuster and U. B. Sleytr, Bioelectrochemistry 55, 5 (2002).

    Article  CAS  Google Scholar 

  83. U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, Prog. Surf. Sci. 68, 231 (2001).

    Article  CAS  Google Scholar 

  84. U. B. Sleytr, E. Györvary, and D. Pum, Prog. Org. Coat. 47, 279 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, B., Pum, D. & Sleytr, U.B. S-layer stabilized lipid membranes (Review). Biointerphases 3, FA3–FA11 (2008). https://doi.org/10.1116/1.2889067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2889067