Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes

Article metrics

Abstract

Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with ≤40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with ≤40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 °C.

References

  1. 1

    B. Alberts et al., Molecular Biology of the Cell, 4th ed. (Garland Publishing, New York, 2000).

  2. 2

    M. Gerstein and H. Hegyi, FEMS Microbiol. Rev. 22, 277 (1998).

  3. 3

    D. J. Muller, Biophys. J. 91, 3133 (2006).

  4. 4

    T. Rabilloud, Nat. Biotechnol. 21, 508 (2003).

  5. 5

    E. Wallin and G. von Heijne, Protein Sci. 7, 1029 (1998).

  6. 6

    H. Aquila, T. A. Link, and M. Klingenberg, FEBS Lett. 212, 1 (1987).

  7. 7

    G. McDermott et al., Nature (London) 374, 517 (2002).

  8. 8

    D. Bramhill, Annu. Rev. Cell Dev. Biol. 13, 395 (1997).

  9. 9

    D. K. Miller et al., Nature (London) 343, 278 (1990).

  10. 10

    G. L. Scheffer et al., Cancer Res. 60, 2589 (2000).

  11. 11

    J. Hardy, Trends Neurosci. 20, 154 (1997).

  12. 12

    T. R. Jahn and S. E. Radford, FEBS J. 272, 5962 (2005).

  13. 13

    A. L. Hopkins and C. R. Groom, Nat. Rev. Drug Discov. 1, 727 (2002).

  14. 14

    H. M. McConnell, T. H. Watts, R. M. Weis, and A. A. Brian, Proc. Natl. Acad. Sci. U.S.A. 81, 7564 (1984).

  15. 15

    T. H. Watts, H. E. Gaub, and H. M. McConnell, Nature (London) 320, 179 (1986).

  16. 16

    N. Boden et al., Tetrahedron 53, 10939 (1997).

  17. 17

    K. H. Sheikh, H. K. Christenson, R. J. Bushby, and S. D. Evans, J. Phys. Chem. B 111, 379 (2007).

  18. 18

    I. Reviakine and A. Brisson, Langmuir 16, 1806 (2000).

  19. 19

    L. J. C. Jeuken et al., J. Am. Chem. Soc. 128, 1711 (2006).

  20. 20

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

  21. 21

    V. P. Zhdanov, K. Dimitrievski, and B. Kasemo, Langmuir 22, 3477 (2006).

  22. 22

    K. Tawa and K. Morigaki, Biophys. J. 89, 2750 (2005).

  23. 23

    B. R. J. Johnson, R. J. Bushby, J. Colyer, and S. D. Evans, Biophys. J. 90, L21 (2006).

  24. 24

    E. Reimhult, M. Zach, F. Hook, and B. Kasemo, Langmuir 22, 3313 (2006).

  25. 25

    D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. Webb, Biophys. J. 16, 1055 (1976).

  26. 26

    A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, J. Phys. Chem. B 111, 3515 (2007).

  27. 27

    Structural Investigations of Oriented Membrane Assemblies by FTIR-ATR Spectroscopy, edited by J. A. de Haseth, The Eleventh International Conference on Fourier Transform Spectroscopy (ICOFTS-11) (American Institute of Physics Press, New York, 1997), Vol. 430, p.729.

  28. 28

    Z. Salamon, Y. Wang, J. L. Soulages, M. F. Brown, and G. Tollin, Biophys. J. 71, 283 (1996).

  29. 29

    Z. Salamon, J. T. Hazzard, and G. Tollin, Proc. Natl. Acad. Sci. U.S.A. 90, 6420 (1993).

  30. 30

    M. J. Spencelayh et al., Angew. Chem. 118, 2165 (2006).

  31. 31

    Microbial Lipids, edited by C. Ratledge and S. G. Wilkinson (Academic Press, Harcourt Brace Jovanovich, London, 1988, Vol. 1.

  32. 32

    L. J. C. Jeuken et al., Langmuir 21, 1481 (2005).

  33. 33

    A. Graneli, J. Rydstrom, B. Kasemo, and F. Hook, Langmuir 19, 842 (2003).

  34. 34

    L. Jeuken et al., J. Am. Chem. Soc. 128, 1711 (2006).

  35. 35

    L. Jeuken et al., Sens. Actuators B 124, 501 (2007).

  36. 36

    H. Schneider, J. J. Lemasters, M. Hochli, and C. R. Hackenbrock, J. Biol. Chem. 255, 3748 (1980).

  37. 37

    C. Elie-Caille, O. Fliniaux, J. Pantigny, J.-C. Maziere, and C. Bourdillon, Langmuir 21, 4661 (2005).

  38. 38

    R. Lovitt et al., Process Biochem. 36, 415 (2000).

  39. 39

    P. K. Smith et al., Anal. Biochem. 150, 76 (1985).

  40. 40

    M. Rodahl and B. Kasemo, Rev. Sci. Instrum. 67, 3238 (1996).

  41. 41

    D. M. Soumpasis, Biophys. J. 41, 95 (1983).

  42. 42

    K. J. Seu, L. R. Cambrea, R. M. Everly, and J. S. Hovis, Biophys. J. 91, 3727 (2006).

  43. 43

    K. C. Weng, J. Kanter, W. H. Robinson, and C. W. Frank, Colloids Surf. B 50, 76 (2006).

  44. 44

    L. Salomé, J.-L. Cazeils, A. Lopez, and J.-F. Tocann, Eur. Biophys. J. 27, 391 (1998).

  45. 45

    M. Weiss, Traffic 5, 662 (2004).

Download references

Author information

Correspondence to Stephen D. Evans.

Rights and permissions

Reprints and Permissions

About this article