Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Impedance spectroscopy of bilayer membranes on single crystal silicon

Article metrics

Abstract

Bilayer membranes on solid supports are being developed as electrically addressable, robust, surface-supported membrane mimetics. These platforms are being explored for basic ion channel research as well as for detection and analyte sensing. The formation of bilayer membranes on semiconductor surfaces is an important step in device integration for transistor and sensor arrays. Here, the authors review the contributions to the impedance response of bilayer membranes on semiconductors, and highlight the important issues for experimental measurements. The authors also present experimental results for diphytanoyl phosphocholine bilayers formed on moderately doped and highly doped n-type silicon using Langmuir-Blodgett-based deposition techniques. The authors demonstrate that a detailed understanding of the contributions to the impedance response is important in developing silicon-based membrane platforms. The authors further report on the bias dependence of the impedance, and show that on highly doped n-type silicon, the membrane impedance can be measured over a 2 V range.

References

  1. 1

    E. Sackmann, Science 271, 43 (1996).

  2. 2

    H. Lang, C. Duschl, and H. Vogel, Langmuir 10, 197 (1994).

  3. 3

    B. Raguse, V. Braach-Maksvytis, B. A. Cornell, L. G. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).

  4. 4

    R. Naumann, S. M. Schiller, F. Giess, B. Grohe, K. B. Hartman, I. Karcher, I. Koper, J. Lubben, K. Vasilev, and W. Knoll, Langmuir 19, 5435 (2003).

  5. 5

    F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, Biophys. J. 87, 3213 (2004).

  6. 6

    S. Lingler, I. Rubinstein, W. Knoll, and A. Offenhausser, Langmuir 13, 7085 (1997).

  7. 7

    M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).

  8. 8

    V. Kiessling and L. K. Tamm, Biophys. J. 84, 408 (2003).

  9. 9

    C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta - Biomembranes 1279, 169 (1996).

  10. 10

    S. Gritsch, P. Nollert, F. Jahnig, and E. Sackmann, Langmuir 14, 3118 (1998).

  11. 11

    P. Fromherz, V. Kiessling, K. Kottig, and G. Zeck, Appl. Phys. A: Mater. Sci. Process. 69, 571 (1999).

  12. 12

    O. Purrucker, H. Hillebrandt, K. Adlkofer, and M. Tanaka, Electrochim. Acta 47, 791 (2001).

  13. 13

    V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhausser, W. Knoll, and I. Koper, Biophys. J. 89, 1780 (2005).

  14. 14

    V. Nikolov, J. Lin, M. Merzlyakov, K. Hristova, and P. C. Searson, Langmuir 23, 13040 (2007).

  15. 15

    A. Natarajan, G. Oskam, and P. C. Searson, J. Phys. Chem. B 102, 7793 (1998).

  16. 16

    S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes Plenum, New York, 1980, p. xiv.

  17. 17

    G. Oskam, J. C. Schmidt, P. M. Hoffmann, and P. C. Searson, J. Electrochem. Soc. 143, 2531 (1996).n

  18. 18

    P. M. Hoffmann, G. Oskam, and P. C. Searson, J. Appl. Phys. 83, 4309 (1998).

  19. 19

    V. Nikolov, A. Radisic, K. Hristova, and P. C. Searson, Langmuir 22, 7156 (2006).

Download references

Author information

Correspondence to Kalina Hristova or Peter C. Searsona.

Rights and permissions

Reprints and Permissions

About this article