Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Formation of supported bacterial lipid membrane mimics

Article metrics

  • 826 Accesses

  • 47 Citations

Abstract

In recent years, a large effort has been spent on advancing the understanding of how surface-supported membranes are formed through vesicle fusion. The aim is to find simple model systems for investigating biophysical and biochemical interactions between constituents of cell membranes and, for example, drugs and toxins altering membrane function. Designing and controlling the self-assembly of model membranes onto sensor substrates thus constitutes an important field of research, enabling applications in, e.g., drug screening, dynamic biointerfaces, artificial noses, and research on membrane-active antibiotics. The authors have developed and investigated the formation of strongly negatively charged supported lipid membranes which systematically mimic bacterial membrane composition on three important biosensor materials: SiO2, TiO2, and indium tin oxide. By tuning the electrostatic interaction through balancing the lipid vesicle charge with the ionic strength of Ca2+ as a fusion promoter, the authors have optimized the self-assembly and obtained new insights into the details of lipid vesicle-surface interaction. The results will be useful for future development and application of specialized lipid membrane surface coatings prepared from complex lipid compositions. The adsorption processes were characterized by a quartz crystal microbalance with dissipation monitoring, optical waveguide lightmode spectroscopy, and fluorescence recovery after photobleaching, which allowed the determination of formation also of nonplanar supported lipid membranes.

References

  1. 1

    E. T. Castellana and P. S. Cremer, Surf. Sci. Rep. 61, 429 (2006).

  2. 2

    R. Naumann et al., Langmuir 19, 5435 (2003).

  3. 3

    E. Reimhult, Z. Zach, F. Hook, and B. Kasemo, Langmuir 22, 3313 (2006).

  4. 4

    J. Voros, J. J. Ramsden, G. Csucs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002).

  5. 5

    R. Horvath, G. Fricsovszky, and E. Papp, Biosens. Bioelectron. 18, 415 (2003).

  6. 6

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

  7. 7

    R. P. Richter, R. Berat, and A. R. Brisson, Langmuir 22, 3497 (2006).

  8. 8

    H. M. McConnell, T. H. Watts, R. M. Weis, and A. A. Brian, Biochim. Biophys. Acta 864, 95 (1986).

  9. 9

    H. Schonherr, J. M. Johnson, P. Lenz, C. W. Frank, and S. G. Boxer, Langmuir 20, 11600 (2004).

  10. 10

    P. Lenz, C. M. Ajo-Franklin, and S. G. Boxer, Langmuir 20, 11092 (2004).

  11. 11

    J. M. Johnson, T. Ha, S. Chu, and S. G. Boxer, Biophys. J. 83, 3371 (2002).

  12. 12

    R. P. Richter and A. R. Brisson, Biophys. J. 88, 3422 (2005).

  13. 13

    R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005).

  14. 14

    R. Richter, A. Mukhopadhyay, and A. Brisson, Biophys. J. 85, 3035 (2003).

  15. 15

    R. P. Richter and A. Brisson, Langmuir 19, 1632 (2003).

  16. 16

    I. Reviakine, A. Simon, and A. Brisson, Langmuir 16, 1473 (2000).

  17. 17

    I. Reviakine and A. Brisson, Langmuir 16, 1806 (2000).

  18. 18

    B. Seantier, C. Breffa, O. Felix, and G. Decher, J. Phys. Chem. B 109, 21755 (2005).

  19. 19

    S. Boudard, B. Seantier, C. Breffa, G. Decher, and O. Felix, Thin Solid Films 495, 246 (2006).

  20. 20

    B. Seantier, C. Breffa, O. Felix, and G. Decher, Nano Lett. 4, 5 (2004).

  21. 21

    K. Dimitrievski, E. Reimhult, B. Kasemo, and V. P. Zhdanov, Colloids Surf., B 39, 77 (2004).

  22. 22

    E. Reimhult, F. Hook, and B. Kasemo, Phys. Rev. E 66, 051905 (2002).

  23. 23

    E. Reimhult, F. Hook, and B. Kasemo, J. Chem. Phys. 117, 7401 (2002).

  24. 24

    E. Reimhult, F. Hook, and B. Kasemo, Langmuir 19, 1681 (2003).

  25. 25

    F. F. Rossetti, M. Textor, and I. Reviakine, Langmuir 22, 3467 (2006).

  26. 26

    F. F. Rossetti, M. Bally, R. Michel, M. Textor, and I. Reviakine, Langmuir 21, 6443 (2005).

  27. 27

    L. J. C. Jeuken, S. D. Connell, M. Nurnabi, J. O’Reilly, P. J. F. Henderson, S. D. Evans, and R. J. Bushby, Langmuir 21, 1481 (2005).

  28. 28

    P. Nollert, H. Kiefer, and F. Jahnig, Biophys. J. 69, 1447 (1995).

  29. 29

    E. Kalb, S. Frey, and L. K. Tamm, Biochim. Biophys. Acta 1103, 307 (1992).

  30. 30

    H. Barman, M. Walch, S. Latinovic-Golic, C. Dumrese, M. Dolder, P. Groscurth, and U. Ziegler, J. Membr. Biol. 212, 29 (2006).

  31. 31

    S. Garcia-Manyes, G. Oncins, and F. Sanz, Biophys. J. 89, 1812 (2005).

  32. 32

    S. Faiss, E. Luthgens, and A. Janshoff, Eur. Biophys. J. 33, 555 (2004).

  33. 33

    N. Papo and Y. Shai, Biochemistry 43, 6393 (2004).

  34. 34

    M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).

  35. 35

    C. Steinem, A. Janshoff, F. Hohn, M. Sieber, and H. J. Galla, Chem. Phys. Lipids 89, 141 (1997).

  36. 36

    M. Stelzle, G. Weissmuller, and E. Sackmann, J. Phys. Chem. 97, 2974 (1993).

  37. 37

    Z. Salamon, G. Lindblom, L. Rilfors, K. Linde, and G. Tollin, Biophys. J. 78, 1400 (2000).

  38. 38

    Z. Salamon, G. Lindblom, and G. Tollin, Biophys. J. 84, 1796 (2003).

  39. 39

    J. H. Tong and T. J. McIntosh, Biophys. J. 86, 3759 (2004).

  40. 40

    L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).

  41. 41

    T. Ganz, Nat. Rev. Immunol. 3, 710 (2003).

  42. 42

    O. Toke, Biopolymers 80, 717 (2005).

  43. 43

    M. Rodahl and B. Kasemo, Rev. Sci. Instrum. 67, 3238 (1996).

  44. 44

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

  45. 45

    J. A. de Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

  46. 46

    G. Csucs and J. J. Ramsden, Biochim. Biophys. Acta 1369, 61 (1998).

  47. 47

    C. Larsson, M. Rodahl, and F. Höök, Anal. Chem. 75, 5080 (2003).

  48. 48

    Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).

  49. 49

    A. Lopez, L. Dupou, A. Altibelli, J. Trotard, and J. F. Tocanne, Biophys. J. 53, 963 (1988).

  50. 50

    D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).

  51. 51

    E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 (2004).

  52. 52

    C. A. Keller, K. Glasmästar, V. P. Zhdanov, and B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000).

  53. 53

    J. T. Groves, N. Ulman, and S. G. Boxer, Science 275, 651 (1997).

  54. 54

    K. Glasmästar, C. Larsson, F. Höök, and B. Kasemo, J. Colloid Interface Sci. 246, 40 (2002).

  55. 55

    K. J. Seu, E. R. Lamberson, and J. S. Hovis, J. Phys. Chem. B 111, 6289 (2007).

  56. 56

    L. R. Cambrea and J. S. Hovis, Biophys. J. 92, 3587 (2007).

  57. 57

    L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

  58. 58

    J. M. Crane, V. Kiessling, and L. K. Tamm, Langmuir 21, 1377 (2005).

  59. 59

    M. Kasbauer, M. Junglas, and T. M. Bayerl, Biophys. J. 76, 2600 (1999).

  60. 60

    M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Colloid Polym. Sci. 277, 550 (1999).

  61. 61

    M. Kosmulski, J. Hartikainen, E. Maczka, W. Janusz, and J. B. Rosenholm, Anal. Chem. 74, 253 (2002).

  62. 62

    E. McCafferty, J. P. Wightman, and T. F. Cromer, J. Electrochem. Soc. 146, 2849 (1999).

  63. 63

    O. Sneh and S. M. George, J. Phys. Chem. 99, 4639 (1995).

  64. 64

    M. E. Haque, T. J. McIntosh, and B. R. Lentz, Biochemistry 40, 4340 (2001).

  65. 65

    I. Reviakine, F. F. Rossetti, A. N. Morozov, and M. Textor, J. Chem. Phys. 122, 204711 (2005).

  66. 66

    U. Seifert, Adv. Phys. 46, 13 (1997).

  67. 67

    U. Seifert and R. Lipowsky, Phys. Rev. A 42, 4768 (1990).

  68. 68

    V. P. Zhdanov, C. A. Keller, K. Glasmästar, and B. Kasemo, J. Chem. Phys. 112, 900 (2000).

  69. 69

    T. M. Bayerl and M. Bloom, Biophys. J. 58, 357 (1990).

  70. 70

    H. Gao, G. A. Luo, F. B. Jun, A. L. Ottova, and H. T. Tien, J. Electroanal. Chem. 496, 158 (2001).

  71. 71

    H. Hillebrandt, M. Tanaka, and E. Sackmann, J. Phys. Chem. B 106, 477 (2002).

  72. 72

    H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15, 8451 (1999).

  73. 73

    S. Gritsch, P. Nollert, F. Jahnig, and E. Sackmann, Langmuir 14, 3118 (1998).

  74. 74

    G. Wiegand, N. Arribas-Layton, H. Hillebrandt, E. Sackmann, and P. Wagner, J. Phys. Chem. B 106, 4245 (2002).

  75. 75

    B. R. Lentz and J. K. Lee, Mol. Membr. Biol. 16, 279 (1999).

Download references

Author information

Correspondence to Erik Reimhult.

Rights and permissions

Reprints and Permissions

About this article