Skip to main content

Journal for Biophysical Chemistry

Formation of supported bacterial lipid membrane mimics

Abstract

In recent years, a large effort has been spent on advancing the understanding of how surface-supported membranes are formed through vesicle fusion. The aim is to find simple model systems for investigating biophysical and biochemical interactions between constituents of cell membranes and, for example, drugs and toxins altering membrane function. Designing and controlling the self-assembly of model membranes onto sensor substrates thus constitutes an important field of research, enabling applications in, e.g., drug screening, dynamic biointerfaces, artificial noses, and research on membrane-active antibiotics. The authors have developed and investigated the formation of strongly negatively charged supported lipid membranes which systematically mimic bacterial membrane composition on three important biosensor materials: SiO2, TiO2, and indium tin oxide. By tuning the electrostatic interaction through balancing the lipid vesicle charge with the ionic strength of Ca2+ as a fusion promoter, the authors have optimized the self-assembly and obtained new insights into the details of lipid vesicle-surface interaction. The results will be useful for future development and application of specialized lipid membrane surface coatings prepared from complex lipid compositions. The adsorption processes were characterized by a quartz crystal microbalance with dissipation monitoring, optical waveguide lightmode spectroscopy, and fluorescence recovery after photobleaching, which allowed the determination of formation also of nonplanar supported lipid membranes.

References

  1. E. T. Castellana and P. S. Cremer, Surf. Sci. Rep. 61, 429 (2006).

    Article  CAS  Google Scholar 

  2. R. Naumann et al., Langmuir 19, 5435 (2003).

    Article  CAS  Google Scholar 

  3. E. Reimhult, Z. Zach, F. Hook, and B. Kasemo, Langmuir 22, 3313 (2006).

    Article  CAS  Google Scholar 

  4. J. Voros, J. J. Ramsden, G. Csucs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002).

    Article  CAS  Google Scholar 

  5. R. Horvath, G. Fricsovszky, and E. Papp, Biosens. Bioelectron. 18, 415 (2003).

    Article  CAS  Google Scholar 

  6. C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    Article  CAS  Google Scholar 

  7. R. P. Richter, R. Berat, and A. R. Brisson, Langmuir 22, 3497 (2006).

    Article  CAS  Google Scholar 

  8. H. M. McConnell, T. H. Watts, R. M. Weis, and A. A. Brian, Biochim. Biophys. Acta 864, 95 (1986).

    CAS  Google Scholar 

  9. H. Schonherr, J. M. Johnson, P. Lenz, C. W. Frank, and S. G. Boxer, Langmuir 20, 11600 (2004).

    Article  Google Scholar 

  10. P. Lenz, C. M. Ajo-Franklin, and S. G. Boxer, Langmuir 20, 11092 (2004).

    Article  CAS  Google Scholar 

  11. J. M. Johnson, T. Ha, S. Chu, and S. G. Boxer, Biophys. J. 83, 3371 (2002).

    Article  CAS  Google Scholar 

  12. R. P. Richter and A. R. Brisson, Biophys. J. 88, 3422 (2005).

    Article  CAS  Google Scholar 

  13. R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005).

    Article  CAS  Google Scholar 

  14. R. Richter, A. Mukhopadhyay, and A. Brisson, Biophys. J. 85, 3035 (2003).

    Article  CAS  Google Scholar 

  15. R. P. Richter and A. Brisson, Langmuir 19, 1632 (2003).

    Article  CAS  Google Scholar 

  16. I. Reviakine, A. Simon, and A. Brisson, Langmuir 16, 1473 (2000).

    Article  CAS  Google Scholar 

  17. I. Reviakine and A. Brisson, Langmuir 16, 1806 (2000).

    Article  CAS  Google Scholar 

  18. B. Seantier, C. Breffa, O. Felix, and G. Decher, J. Phys. Chem. B 109, 21755 (2005).

    Article  CAS  Google Scholar 

  19. S. Boudard, B. Seantier, C. Breffa, G. Decher, and O. Felix, Thin Solid Films 495, 246 (2006).

    Article  CAS  Google Scholar 

  20. B. Seantier, C. Breffa, O. Felix, and G. Decher, Nano Lett. 4, 5 (2004).

    Article  CAS  Google Scholar 

  21. K. Dimitrievski, E. Reimhult, B. Kasemo, and V. P. Zhdanov, Colloids Surf., B 39, 77 (2004).

    Article  CAS  Google Scholar 

  22. E. Reimhult, F. Hook, and B. Kasemo, Phys. Rev. E 66, 051905 (2002).

    Article  CAS  Google Scholar 

  23. E. Reimhult, F. Hook, and B. Kasemo, J. Chem. Phys. 117, 7401 (2002).

    Article  CAS  Google Scholar 

  24. E. Reimhult, F. Hook, and B. Kasemo, Langmuir 19, 1681 (2003).

    Article  CAS  Google Scholar 

  25. F. F. Rossetti, M. Textor, and I. Reviakine, Langmuir 22, 3467 (2006).

    Article  CAS  Google Scholar 

  26. F. F. Rossetti, M. Bally, R. Michel, M. Textor, and I. Reviakine, Langmuir 21, 6443 (2005).

    Article  CAS  Google Scholar 

  27. L. J. C. Jeuken, S. D. Connell, M. Nurnabi, J. O’Reilly, P. J. F. Henderson, S. D. Evans, and R. J. Bushby, Langmuir 21, 1481 (2005).

    Article  CAS  Google Scholar 

  28. P. Nollert, H. Kiefer, and F. Jahnig, Biophys. J. 69, 1447 (1995).

    Article  CAS  Google Scholar 

  29. E. Kalb, S. Frey, and L. K. Tamm, Biochim. Biophys. Acta 1103, 307 (1992).

    Article  CAS  Google Scholar 

  30. H. Barman, M. Walch, S. Latinovic-Golic, C. Dumrese, M. Dolder, P. Groscurth, and U. Ziegler, J. Membr. Biol. 212, 29 (2006).

    Article  CAS  Google Scholar 

  31. S. Garcia-Manyes, G. Oncins, and F. Sanz, Biophys. J. 89, 1812 (2005).

    Article  CAS  Google Scholar 

  32. S. Faiss, E. Luthgens, and A. Janshoff, Eur. Biophys. J. 33, 555 (2004).

    Article  CAS  Google Scholar 

  33. N. Papo and Y. Shai, Biochemistry 43, 6393 (2004).

    Article  CAS  Google Scholar 

  34. M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 (2000).

    Article  CAS  Google Scholar 

  35. C. Steinem, A. Janshoff, F. Hohn, M. Sieber, and H. J. Galla, Chem. Phys. Lipids 89, 141 (1997).

    Article  CAS  Google Scholar 

  36. M. Stelzle, G. Weissmuller, and E. Sackmann, J. Phys. Chem. 97, 2974 (1993).

    Article  CAS  Google Scholar 

  37. Z. Salamon, G. Lindblom, L. Rilfors, K. Linde, and G. Tollin, Biophys. J. 78, 1400 (2000).

    Article  CAS  Google Scholar 

  38. Z. Salamon, G. Lindblom, and G. Tollin, Biophys. J. 84, 1796 (2003).

    Article  CAS  Google Scholar 

  39. J. H. Tong and T. J. McIntosh, Biophys. J. 86, 3759 (2004).

    Article  CAS  Google Scholar 

  40. L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).

    Article  CAS  Google Scholar 

  41. T. Ganz, Nat. Rev. Immunol. 3, 710 (2003).

    Article  CAS  Google Scholar 

  42. O. Toke, Biopolymers 80, 717 (2005).

    Article  CAS  Google Scholar 

  43. M. Rodahl and B. Kasemo, Rev. Sci. Instrum. 67, 3238 (1996).

    Article  CAS  Google Scholar 

  44. G. Sauerbrey, Z. Phys. 155, 206 (1959).

    Article  CAS  Google Scholar 

  45. J. A. de Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  Google Scholar 

  46. G. Csucs and J. J. Ramsden, Biochim. Biophys. Acta 1369, 61 (1998).

    Article  CAS  Google Scholar 

  47. C. Larsson, M. Rodahl, and F. Höök, Anal. Chem. 75, 5080 (2003).

    Article  CAS  Google Scholar 

  48. Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).

    Article  CAS  Google Scholar 

  49. A. Lopez, L. Dupou, A. Altibelli, J. Trotard, and J. F. Tocanne, Biophys. J. 53, 963 (1988).

    Article  CAS  Google Scholar 

  50. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).

    Article  CAS  Google Scholar 

  51. E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 (2004).

    Article  CAS  Google Scholar 

  52. C. A. Keller, K. Glasmästar, V. P. Zhdanov, and B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000).

    Article  CAS  Google Scholar 

  53. J. T. Groves, N. Ulman, and S. G. Boxer, Science 275, 651 (1997).

    Article  CAS  Google Scholar 

  54. K. Glasmästar, C. Larsson, F. Höök, and B. Kasemo, J. Colloid Interface Sci. 246, 40 (2002).

    Article  Google Scholar 

  55. K. J. Seu, E. R. Lamberson, and J. S. Hovis, J. Phys. Chem. B 111, 6289 (2007).

    Article  CAS  Google Scholar 

  56. L. R. Cambrea and J. S. Hovis, Biophys. J. 92, 3587 (2007).

    Article  CAS  Google Scholar 

  57. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Langmuir 14, 5636 (1998).

    Article  CAS  Google Scholar 

  58. J. M. Crane, V. Kiessling, and L. K. Tamm, Langmuir 21, 1377 (2005).

    Article  CAS  Google Scholar 

  59. M. Kasbauer, M. Junglas, and T. M. Bayerl, Biophys. J. 76, 2600 (1999).

    Article  CAS  Google Scholar 

  60. M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Colloid Polym. Sci. 277, 550 (1999).

    Article  CAS  Google Scholar 

  61. M. Kosmulski, J. Hartikainen, E. Maczka, W. Janusz, and J. B. Rosenholm, Anal. Chem. 74, 253 (2002).

    Article  CAS  Google Scholar 

  62. E. McCafferty, J. P. Wightman, and T. F. Cromer, J. Electrochem. Soc. 146, 2849 (1999).

    Article  CAS  Google Scholar 

  63. O. Sneh and S. M. George, J. Phys. Chem. 99, 4639 (1995).

    Article  CAS  Google Scholar 

  64. M. E. Haque, T. J. McIntosh, and B. R. Lentz, Biochemistry 40, 4340 (2001).

    Article  CAS  Google Scholar 

  65. I. Reviakine, F. F. Rossetti, A. N. Morozov, and M. Textor, J. Chem. Phys. 122, 204711 (2005).

    Article  Google Scholar 

  66. U. Seifert, Adv. Phys. 46, 13 (1997).

    Article  CAS  Google Scholar 

  67. U. Seifert and R. Lipowsky, Phys. Rev. A 42, 4768 (1990).

    Article  CAS  Google Scholar 

  68. V. P. Zhdanov, C. A. Keller, K. Glasmästar, and B. Kasemo, J. Chem. Phys. 112, 900 (2000).

    Article  CAS  Google Scholar 

  69. T. M. Bayerl and M. Bloom, Biophys. J. 58, 357 (1990).

    Article  CAS  Google Scholar 

  70. H. Gao, G. A. Luo, F. B. Jun, A. L. Ottova, and H. T. Tien, J. Electroanal. Chem. 496, 158 (2001).

    Article  CAS  Google Scholar 

  71. H. Hillebrandt, M. Tanaka, and E. Sackmann, J. Phys. Chem. B 106, 477 (2002).

    Article  CAS  Google Scholar 

  72. H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15, 8451 (1999).

    Article  CAS  Google Scholar 

  73. S. Gritsch, P. Nollert, F. Jahnig, and E. Sackmann, Langmuir 14, 3118 (1998).

    Article  CAS  Google Scholar 

  74. G. Wiegand, N. Arribas-Layton, H. Hillebrandt, E. Sackmann, and P. Wagner, J. Phys. Chem. B 106, 4245 (2002).

    Article  CAS  Google Scholar 

  75. B. R. Lentz and J. K. Lee, Mol. Membr. Biol. 16, 279 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Reimhult.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merz, C., Knoll, W., Textor, M. et al. Formation of supported bacterial lipid membrane mimics. Biointerphases 3, FA41–FA50 (2008). https://doi.org/10.1116/1.2896119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2896119