Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Melting and interdigitation of microstructured solid supported membranes quantified by imaging ellipsometry

Article metrics

  • 312 Accesses

  • 10 Citations

Abstract

The phase transition of individually addressable microstructured lipid bilayers was investigated by means of noncontact imaging ellipsometry. Two-dimensional membrane compartments were created on silicon substrates by micromolding in capillaries and the phase transition of supported dimyristoylphosphadiylcholine DMPC and dipentadecoylphosphatidylcholine DiC15PC membranes was determined measuring area expansion and thickness of the bilayer as a function of temperature, ethanol concentration, and cholesterol content. Apart from measuring the thermotropic behavior of DMPC on glass slides and silicon wafers, the authors were able to visualize the reversible induction of an interdigitated phase by partitioning of ethanol into the microstructured lipid bilayers. Interdigitation induced by addition of ethanol was measured as a function of cholesterol content and shifts of the main phase transition temperature T M of microstructured DiC15PC were quantified as a function of ethanol concentration. They observed that cholesterol abolishes interdigitation at higher concentrations and found a biphasic behavior of T M as a function of ethanol concentration in good accordance to what is known from vesicles in solution.

References

  1. 1

    A. Janshoff and C. Steinem, Anal. Bioanal. Chem. 385, 433 (2006).

  2. 2

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

  3. 3

    E. Reimhult, F. Höök, and B. Kasemo, Langmuir 19, 1681 (2003).

  4. 4

    E. Reimhult, M. Zäch, F. Höök, and B. Kasemo, Langmuir 22, 3313 (2006).

  5. 5

    F. Richter, G. Rapp, and L. Finegold, Phys. Rev. E 63, 051914 (2001).

  6. 6

    R. P. Richter and A. R. Brisson, Biophys. J. 88, 3422 (2005).

  7. 7

    R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005).

  8. 8

    H. Schönherr, J. M. Johnson, P. Lenz, C. W. Frank, and S. G. Boxer, Langmuir 20, 11600 (2004).

  9. 9

    K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, and J. Heberle, J. Am. Chem. Soc. 126, 16199 (2004).

  10. 10

    V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhäusser, W. Knoll, and I. Koeper, Biophys. J. 89, 1780 (2005).

  11. 11

    M. A. Cooper, J. Mol. Recognit. 17, 286 (2004).

  12. 12

    B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, L. Wieczorek, B. Raguse, and R. J. Pace, Nature (London) 387, 580 (1997).

  13. 13

    J. Drexler and C. Steinem, J. Phys. Chem. B 107, 11245 (2003).

  14. 14

    G. Elender, M. Kühner, and E. Sackmann, Biosens. Bioelectron. 11, 565 (1996).

  15. 15

    G. Favero, L. Capanella, S. Cavallo, A. D’Annibale, M. Perrella, E. Mattei, and T. Ferri (unpublished).

  16. 16

    K. Fendler, M. Klingenberg, G. Leblanc, J. J. H. H. M. DePont, B. L. Kelety, W. Dörner, and E. Bamberg, in Ultrathin Electrochemical Chemo- and Biosensors, edited by V. M. Mirsky Springer, Berlin, 2004, pp. 331–349.

  17. 17

    F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, Biophys. J. 87, 3213 (2004).

  18. 18

    M. Goryll, S. J. Wilk, G. M. Laws, T. J. Thornton, S. M. Goodnick, M. Saranti, J. Tang, and R. S. Eisenberg, Superlattices Microstruct. 34, 451 (2003).

  19. 19

    S. Gritsch, P. Nollert, F. Jähnig, and E. Sackmann, Langmuir 14, 3118 (1998).

  20. 20

    W. Knoll, K. Morigaki, R. Naumann, B. Sacca, S. Schiller, and E.-K. Sinner, in Ultrathin Electrochemical Chemo- and Biosensors, edited by V. M. Mirsky Springer, Berlin, 2004, pp. 239–253.

  21. 21

    H. Lang, C. Duschl, and H. Vogel, Langmuir 10, 197 (1994).

  22. 22

    C. Steinem, H.-J. Galla, and A. Janshoff, Phys. Chem. Chem. Phys. 2, 4580 (2000).

  23. 23

    C. Steinem, A. Janshoff, H.-J. Galla, and S. Manfred, Bioelectrochem. Bioenerg. 42, 213 (1997).

  24. 24

    C. Steinem, A. Janshoff, W.-P. Ulrich, M. Sieber, and H.-J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

  25. 25

    C. Steinem, A. Janshoff, K. von dem Bruch, K. Reihs, J. Goossens, and H.-J. Galla, Bioelectrochem. Bioenerg. 45, 17 (1998).

  26. 26

    T. Stora, J. H. Lakey, and H. Vogel, Angew. Chem., Int. Ed. 38, 389 (1999).

  27. 27

    T. Yang, S.-Y. Jung, H. Mao, and P. S. Cremer, Anal. Chem. 73, 165 (2001).

  28. 28

    M. a. Holden, S.-Y. Jung, T. Yang, E. T. Castellana, and P. S. Cremer, J. Am. Chem. Soc. 126, 6512 (2004).

  29. 29

    A. Janshoff and S. Künneke, Eur. Biophys. J. 29, 549 (2000).

  30. 30

    S. Schuy and A. Janshoff, ChemPhysChem 7, 1207 (2006).

  31. 31

    S. Künneke and A. Janshoff, Angew. Chem., Int. Ed. 41, 314 (2002).

  32. 32

    S. Schuy and A. Janshoff, J. Colloid Interface Sci. 295, 93 (2006).

  33. 33

    S. Faiß, S. Schuy, D. Weiskopf, C. Steinem, and A. Janshoff, J. Phys. Chem. B 111, 13979 (2007).

  34. 34

    E. S. Rowe, Biochemistry 22, 3299 (1983).

  35. 35

    S. A. Simon and T. J. McIntosh, Biochim. Biophys. Acta 773, 169 (1984).

  36. 36

    J. L. Slater and C.-H. Huang, Prog. Lipid Res. 27, 325 (1988).

  37. 37

    E. S. Rowe, Biochim. Biophys. Acta 813, 321 (1985).

  38. 38

    J. Mou, J. Yang, C. Huang, and Z. Shao, Biochemistry 33, 9981 (1994).

  39. 39

    J. M. Sturtevant, Proc. Natl. Acad. Sci. U.S.A. 79, 3963 (1982).

  40. 40

    L. Löbbecke and G. Cevc, Biochim. Biophys. Acta 1237, 59 (1995).

  41. 41

    N. Pappayee and A. K. Mishra, Photochem. Photobiol. 73, 573 (2001).

  42. 42

    M. C. Howland, A. W. Szmodis, B. Sanii, and A. N. Parikh, Biophys. J. 92, 1306 (2007).

  43. 43

    Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).

  44. 44

    T. Heimburg, Biochim. Biophys. Acta 1415, 147 (1998).

  45. 45

    J. F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H. I. Petrache, and R. M. Suter, Biophys. J. 70, 1419 (1996).

  46. 46

    F. Tokumasu, A. J. Jin, and J. A. Dvorak, J. Electron Microsc. 51, 1 (2002).

  47. 47

    P. W. M. Van Dijck, B. De Kruijff, P. A. M. M. Aarts, A. J. Verkleij, and J. De Gier, Biochim. Biophys. Acta 506, 183 (1978).

  48. 48

    D. Marsh, A. Watts, and P. F. Knowles, Biochim. Biophys. Acta 465, 500 (1977).

  49. 49

    G. Cevc and D. Marsh, Phospholipid Bilayers: Physical Principles and Models Wiley-Interscience, New York, (1987).

  50. 50

    N. Kahya and P. Schwille, J. Fluoresc. 16, 671 (2006).

  51. 51

    F. Yarrow, T. J. H. Vlugt, J. P. J. M. van der Eerden, and M. M. E. Snel, J. Cryst. Growth 275, e1417 (2005).

  52. 52

    A. Charrier and F. Thibaudau, Biophys. J. 89, 1094 (2005).

  53. 53

    Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86, 3783 (2004).

  54. 54

    A. F. Xie and S. Granick, Nat. Mater. 1, 129 (2002).

  55. 55

    A. Miszta, B. van Deursen, R. Schoufs, M. Hof, and W. T. Hermens, Langmuir 24, 19 (2008).

  56. 56

    E. S. Rowe and J. M. Campion, Biophys. J. 67, 1888 (1994).

  57. 57

    C. Trandum, P. Westh, K. Jorgensen, and O. G. Mouritsen, Biophys. J. 78, 2486 (2000).

Download references

Author information

Correspondence to Andreas Janshoffa.

Rights and permissions

Reprints and Permissions

About this article