Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Surface supported bilayer platform for studies of lateral association of proteins in membranes (Mini Review)

Article metrics

Abstract

Here, the authors review how surface supported bilayers can be engineered and how Förster resonance energy transfer (FRET) can be used to quantify interactions between transmembrane peptides in these bilayers. The requirements for the surface supported platform are (1) lateral mobility of the peptides, (2) transmembrane orientation of the peptides, and (3) capabilities for FRET measurements. To satisfy these requirements, a new assembly method, termed “directed assembly” was developed. This assembly method could have broad utility in basic studies of proteins in membranes and in biotechnological applications.

References

  1. 1

    E. Sackmann, Science 271, 43 (1996).

  2. 2

    E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).

  3. 3

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

  4. 4

    K. Dimitrievski, A. Zach, V. P. Zhdanov, and B. Kasemo, Colloids Surf., B 47, 115 (2006).

  5. 5

    C. A. Keller, K. Glasmästar, V. P. Zhdanov, and B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000).

  6. 6

    C. Heibel, S. Maus, W. Knoll, and J. Ruhe, Organic Thin Films 695, 104 (1998).

  7. 7

    P. S. Cremer and S. G. Boxer, J. Phys. Chem. B 103, 2554 (1999).

  8. 8

    C. Rossi and J. Chopineau, Eur. Biophys. J. 36, 955 (2007).

  9. 9

    E. Li, M. You, and K. Hristova, Biochemistry 44, 352 (2005).

  10. 10

    M. You, E. Li, W. C. Wimley, and K. Hristova, Anal. Biochem. 340, 154 (2005).

  11. 11

    E. Li, M. You, and K. Hristova, J. Mol. Biol. 356, 600 (2006).

  12. 12

    M. Merzlyakov, M. You, E. Li, and K. Hristova, J. Mol. Biol. 358, 1 (2006).

  13. 13

    M. Merzlyakov, E. Li, and K. Hristova, Langmuir 22, 1247 (2006).

  14. 14

    J. F. Schakelford, Introduction to Materials Science for Engineers (Prentice Hall, Upper Saddle River, NJ, 2005), pp. 157–182.

  15. 15

    D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).

  16. 16

    R. Merkel, E. Sackmann, and E. Evans, J. Phys. (France) 50, 1535 (1989).

  17. 17

    L. Zhang, M. L. Longo, and P. Stroeve, Langmuir 16, 5093 (2000).

  18. 18

    M. A. Deverall, E. Gindl, E. K. Sinner, H. Besir, J. Ruehe, M. J. Saxton, and C. A. Naumann, Biophys. J. 88, 1875 (2005).

  19. 19

    A. K. Kenworthy, K. Hristova, D. Needham, and T. J. McIntosh, Biophys. J. 68, 1921 (1995).

  20. 20

    M. Merzlyakov, E. Li, I. Gitsov, and K. Hristova, Langmuir 22, 10145 (2006).

  21. 21

    Y. Wu, H. W. Huang, and G. A. Olah, Biophys. J. 57, 797 (1990).

  22. 22

    M. Merzlyakov, E. Li, R. Casas, and K. Hristova, Langmuir 22, 6986 (2006).

  23. 23

    P. Wu and L. Brand, Anal. Biochem. 218, 1 (1994).

  24. 24

    A. K. Kenworthy, N. Petranova, and M. Edidin, Mol. Biol. Cell 11, 1645 (2000).

  25. 25

    A. K. Kenworthy and M. Edidin, J. Cell Biol. 142, 69 (1998).

  26. 26

    R. M. Clegg, Curr. Opin. Biotechnol. 6, 103 (1995).

  27. 27

    R. M. Clegg, in Fluorescence Imaging Spectroscopy and Microscopy, edited by X. F. Wang and B. Herman (Wiley, New York, 1996), 179–252.

  28. 28

    E. Li and K. Hristova, Langmuir 20, 9053 (2004).

  29. 29

    M. You, E. Li, and K. Hristova, Biochemistry 45, 5551 (2006).

  30. 30

    B. D. Adair and D. M. Engelman, Biochemistry 33, 5539 (1994).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article