Skip to main content

Journal for Biophysical Chemistry

Stable insulating tethered bilayer lipid membranes

Abstract

Tethered bilayer lipid membranes have been shown to be an excellent model system for biological membranes. Coupling of a membrane to a solid supports creates a stable system that is accessible for various surface analytical tools. Good electrical sealing properties also enable the use of the membranes in practical sensing applications. The authors have shown that tethered membranes have extended lifetimes up to several months. Air-stability of the bilayer can be achieved by coating the membrane with a hydrogel. The structure of a monolayer and its stability under applied dc potentials have been investigated by neutron scattering. © 2008 American Vacuum Society.

References

  1. N. Fertig, A. Tilke, R. H. Blick, J. P. Kotthaus, J. C. Behrends, and G. ten Bruggencate, Appl. Phys. Lett. 77, 1218 (2000).

    Article  CAS  Google Scholar 

  2. G. Riquelme, E. Lopez, L. M. Garcia-Segura, J. A. Ferragut, and J. M. Gonzalez-Ros, Biochemistry 29, 11215 (1990).

    Article  CAS  Google Scholar 

  3. C.-C. Shieh, Drug Discov. Today 9, 551 (2004).

    Article  Google Scholar 

  4. N. Fertig, R. H. Blick, and J. C. Behrends, Biophys. J. 82, 3056 (2002).

    Article  CAS  Google Scholar 

  5. H. Bayley and P. S. Cremer, Nature (London) 413, 226 (2001).

    Article  CAS  Google Scholar 

  6. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).

    Article  CAS  Google Scholar 

  7. S. M. Bezrukov and J. J. Kasianowicz, Phys. Rev. Lett. 70, 2352 (1993).

    Article  CAS  Google Scholar 

  8. M. Winterhalter, Curr. Opin. Colloid Interface Sci. 5, 250 (2000).

    Article  CAS  Google Scholar 

  9. B. Schuster, U. B. Sleytr, A. Diederich, G. Bähr, and M. Winterhalter, Eur. Biophys. J. 28, 583 (1999).

    Article  CAS  Google Scholar 

  10. W. Meier, A. Graff, A. Diederich, and M. Winterhalter, Phys. Chem. Chem. Phys. 2, 4559 (2000).

    Article  CAS  Google Scholar 

  11. F. Albertorio, A. J. Diaz, T. Yang, V. A. Chapa, S. Kataoka, E. T. Castellana, and P. S. Cremer, Langmuir 21, 7476 (2005).

    Article  CAS  Google Scholar 

  12. R. F. Costello, I. R. Peterson, J. Heptinstall, and D. J. Walton, Biosens. Bioelectron. 14, 265 (1999).

    Article  CAS  Google Scholar 

  13. T. J. Jeon, N. Malmstadt, and J. J. Schmidt, J. Am. Chem. Soc. 128, 42 (2006).

    Article  CAS  Google Scholar 

  14. W. Ziegler, J. Gaburjáková, M. Gaburjáková, B. Sivák, V. Rehaček, V. Tvarozek, and T. Hianik, Colloids and Surfaces A 140, 357 (1998).

    Article  CAS  Google Scholar 

  15. E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  16. M. Snejdarkova, M. Rehak, and M. Otto, Biosens. Bioelectron. 12, 145 (1997).

    Article  CAS  Google Scholar 

  17. L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

    Article  CAS  Google Scholar 

  18. W. Römer and C. Steinem, Biophys. J. 86, 955 (2004).

    Article  Google Scholar 

  19. B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997).

    Article  CAS  Google Scholar 

  20. I. Köper, Mol. Biosyst. 3, 651 (2007).

    Article  Google Scholar 

  21. V. Atanasov, P. P. Atanasova, I. K. Vockenroth, N. Knorr, and I. Köper, Bioconjug. Chem. 17, 631 (2006).

    Article  CAS  Google Scholar 

  22. V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhäusser, W. Knoll, and I. Köper, Biophys. J. 89, 1780 (2005).

    Article  CAS  Google Scholar 

  23. D. J. McGillivray, G. Valincius, D. J. Vanderhah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, and M. Losche, Biointerphases 2, 21 (2007).

    Article  CAS  Google Scholar 

  24. R. Naumann et al., Langmuir 19, 5435 (2003).

    Article  CAS  Google Scholar 

  25. I. K. Vockenroth, P. P. Atanasova, J. R. Long, A. T. A. Jenkins, W. Knoll, and I. Köper, Biomembranes 1768, 1114 (2007).

    Article  CAS  Google Scholar 

  26. M. R. Moncelli, L. Becucci, and S. M. Schiller, Bioelectrochemistry 63, 161 (2004).

    Article  CAS  Google Scholar 

  27. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem. 42, 208 (2003).

    Article  CAS  Google Scholar 

  28. The same molecule has been described previously as DPTL, however, to be consistent with the common nomenclature for lipids, Phy is used for the phytanyl moiety.

  29. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy — Theory, Experiment, and Applications. 2 (Wiley, Hoboken, NJ, 2005).

    Book  Google Scholar 

  30. J. A. Dura et al., Rev. Sci. Instrum. 77, 074301(2006).

    Article  Google Scholar 

  31. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  32. P. A. Kienzle, M. Doucet, D. J. McGillivray, K. V. O’Donnovan, N. F. Berk, and C. F. Majkrzak, http://www.ncnr.nist.gov/reflpak/garefl.html, 2000–2006.

  33. R. Naumann, D. Walz, S. M. Schiller, and W. Knoll, J. Electroanal. Chem. 550–551, 241 (2003).

    Google Scholar 

  34. G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).

    Article  CAS  Google Scholar 

  35. X.-F. Kang, S. Cheley, A. C. Rice-Ficht, and H. Bayley, J. Am. Chem. Soc. 129, 4701 (2007).

    Article  CAS  Google Scholar 

  36. J. W. Shim and L. Q. Gu, Anal. Chem. 79, 2207 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Köper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vockenroth, I.K., Ohm, C., Robertson, J.W.F. et al. Stable insulating tethered bilayer lipid membranes. Biointerphases 3, FA68–FA73 (2008). https://doi.org/10.1116/1.2912097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2912097