Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Stable insulating tethered bilayer lipid membranes

Article metrics

Abstract

Tethered bilayer lipid membranes have been shown to be an excellent model system for biological membranes. Coupling of a membrane to a solid supports creates a stable system that is accessible for various surface analytical tools. Good electrical sealing properties also enable the use of the membranes in practical sensing applications. The authors have shown that tethered membranes have extended lifetimes up to several months. Air-stability of the bilayer can be achieved by coating the membrane with a hydrogel. The structure of a monolayer and its stability under applied dc potentials have been investigated by neutron scattering. © 2008 American Vacuum Society.

References

  1. 1

    N. Fertig, A. Tilke, R. H. Blick, J. P. Kotthaus, J. C. Behrends, and G. ten Bruggencate, Appl. Phys. Lett. 77, 1218 (2000).

  2. 2

    G. Riquelme, E. Lopez, L. M. Garcia-Segura, J. A. Ferragut, and J. M. Gonzalez-Ros, Biochemistry 29, 11215 (1990).

  3. 3

    C.-C. Shieh, Drug Discov. Today 9, 551 (2004).

  4. 4

    N. Fertig, R. H. Blick, and J. C. Behrends, Biophys. J. 82, 3056 (2002).

  5. 5

    H. Bayley and P. S. Cremer, Nature (London) 413, 226 (2001).

  6. 6

    J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).

  7. 7

    S. M. Bezrukov and J. J. Kasianowicz, Phys. Rev. Lett. 70, 2352 (1993).

  8. 8

    M. Winterhalter, Curr. Opin. Colloid Interface Sci. 5, 250 (2000).

  9. 9

    B. Schuster, U. B. Sleytr, A. Diederich, G. Bähr, and M. Winterhalter, Eur. Biophys. J. 28, 583 (1999).

  10. 10

    W. Meier, A. Graff, A. Diederich, and M. Winterhalter, Phys. Chem. Chem. Phys. 2, 4559 (2000).

  11. 11

    F. Albertorio, A. J. Diaz, T. Yang, V. A. Chapa, S. Kataoka, E. T. Castellana, and P. S. Cremer, Langmuir 21, 7476 (2005).

  12. 12

    R. F. Costello, I. R. Peterson, J. Heptinstall, and D. J. Walton, Biosens. Bioelectron. 14, 265 (1999).

  13. 13

    T. J. Jeon, N. Malmstadt, and J. J. Schmidt, J. Am. Chem. Soc. 128, 42 (2006).

  14. 14

    W. Ziegler, J. Gaburjáková, M. Gaburjáková, B. Sivák, V. Rehaček, V. Tvarozek, and T. Hianik, Colloids and Surfaces A 140, 357 (1998).

  15. 15

    E. Sackmann, Science 271, 43 (1996).

  16. 16

    M. Snejdarkova, M. Rehak, and M. Otto, Biosens. Bioelectron. 12, 145 (1997).

  17. 17

    L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

  18. 18

    W. Römer and C. Steinem, Biophys. J. 86, 955 (2004).

  19. 19

    B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997).

  20. 20

    I. Köper, Mol. Biosyst. 3, 651 (2007).

  21. 21

    V. Atanasov, P. P. Atanasova, I. K. Vockenroth, N. Knorr, and I. Köper, Bioconjug. Chem. 17, 631 (2006).

  22. 22

    V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhäusser, W. Knoll, and I. Köper, Biophys. J. 89, 1780 (2005).

  23. 23

    D. J. McGillivray, G. Valincius, D. J. Vanderhah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, and M. Losche, Biointerphases 2, 21 (2007).

  24. 24

    R. Naumann et al., Langmuir 19, 5435 (2003).

  25. 25

    I. K. Vockenroth, P. P. Atanasova, J. R. Long, A. T. A. Jenkins, W. Knoll, and I. Köper, Biomembranes 1768, 1114 (2007).

  26. 26

    M. R. Moncelli, L. Becucci, and S. M. Schiller, Bioelectrochemistry 63, 161 (2004).

  27. 27

    S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem. 42, 208 (2003).

  28. 28

    The same molecule has been described previously as DPTL, however, to be consistent with the common nomenclature for lipids, Phy is used for the phytanyl moiety.

  29. 29

    E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy — Theory, Experiment, and Applications. 2 (Wiley, Hoboken, NJ, 2005).

  30. 30

    J. A. Dura et al., Rev. Sci. Instrum. 77, 074301(2006).

  31. 31

    L. G. Parratt, Phys. Rev. 95, 359 (1954).

  32. 32

    P. A. Kienzle, M. Doucet, D. J. McGillivray, K. V. O’Donnovan, N. F. Berk, and C. F. Majkrzak, http://www.ncnr.nist.gov/reflpak/garefl.html, 2000–2006.

  33. 33

    R. Naumann, D. Walz, S. M. Schiller, and W. Knoll, J. Electroanal. Chem. 550–551, 241 (2003).

  34. 34

    G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).

  35. 35

    X.-F. Kang, S. Cheley, A. C. Rice-Ficht, and H. Bayley, J. Am. Chem. Soc. 129, 4701 (2007).

  36. 36

    J. W. Shim and L. Q. Gu, Anal. Chem. 79, 2207 (2007).

Download references

Author information

Correspondence to Ingo Köper.

Rights and permissions

Reprints and Permissions

About this article