Skip to main content

Journal for Biophysical Chemistry

Evaluating the performance of fibrillar collagen films formed at polystyrene surfaces as cell culture substrates

Abstract

While it is well-appreciated that the extracellular matrix plays a critical role in influencing cell responses, well-defined and reproducible presentation of extracellular matrix proteins poses a challenge for in vitro experiments. Films of type 1 collagen fibrils assembled on alkanethiolate monolayers formed at gold-coated surfaces have been shown to elicit a cellular response comparable to collagen gels, but with the advantages of excellent optical properties, and high reproducibility and robustness. To make this collagen matrix more accessible to laboratories that do not have access to gold film deposition the authors have examined the use of untreated polystyrene as a substrate for forming fibrillar collagen films. Direct comparison of films of fibrillar collagen fibrils formed at polystyrene with those formed at alkanethiolate monolayers indicates that films of collagen formed on these two surfaces compare very favorably to one another, both in their supramolecular structural characteristics as well as in the cell response that they elicit. Both substrates exhibit a dense covering of fibrils approximately 200 nm in diameter. The spreading of fibroblasts and activation of the tenascin-C gene promoter are statistically equivalent as determined by a metric derived from the D-statistic normally used in the Kolmogorov-Smirnov statistical test. The results of this study suggest that biologically relevant, robust thin films of collagen fibrils can be formed in any laboratory in untreated polystyrene dishes and multi-well polystyrene plates.

References

  1. M. E. Nimni, Collagen (CRC, Boca Raton, FL, 1988).

    Google Scholar 

  2. C. J. Koh and A. Atala, J. Am. Soc. Nephrol. 15, 1113 (2004).

    Article  Google Scholar 

  3. A. Boskey and C. N. Pleshko, Biomaterials 28, 2465 (2007).

    Article  CAS  Google Scholar 

  4. D. Kessler, S. Dethlefsen, I. Haase, M. Plomann, F. Hirche, T. Krieg, and B. Eckes, J. Biol. Chem. 276, 36575 (2001).

    Article  CAS  Google Scholar 

  5. C. D. Franco, G. Hou, and M. P. Bendeck, Trends Cardiovasc. Med. 12, 143 (2002).

    Article  CAS  Google Scholar 

  6. R. Chapados, K. Abe, K. Ihida-Stansbury, D. McKean, A. T. Gates, M. Kern, S. Merklinger, J. Elliott, A. Plant, H. Shimokawa, and P. L. Jones, Circ. Res. 99, 837 (2006).

    Article  CAS  Google Scholar 

  7. H. Koyama, E. W. Raines, K. E. Bornfeldt, J. M. Roberts, and R. Ross, Cell 87, 1069 (1996).

    Article  CAS  Google Scholar 

  8. S. J. Wall, Z. D. Zhong, and Y. A. Declerck, J. Biol. Chem. 282, 24471 (2007).

    Article  CAS  Google Scholar 

  9. J. T. Elliott, A. Tona, J. T. Woodward, P. L. Jones, and A. L. Plant, Langmuir 19, 1506 (2003).

    Article  CAS  Google Scholar 

  10. M. Mrksich, Cell. Mol. Life Sci. 54, 653 (1998).

    Article  CAS  Google Scholar 

  11. J. T. Elliott, J. T. Woodward, A. Umarji, Y. Mei, and A. Tona, Biomaterials 28, 576 (2007).

    Article  CAS  Google Scholar 

  12. D. P. McDaniel, G. A. Shaw, J. T. Elliott, K. Bhadriraju, C. Meuse, K. H Chung, and A. L. Plant, Biophys. J. 92, 1759 (2007).

    Article  CAS  Google Scholar 

  13. Amyot, A. Small, H. Boukari, D. Sackett, J. Elliott, D. McDaniel, A). Plant, and A. Gandjbakhche, J. Biomed. Mat. Res. Part B (in press).

  14. J. T. Elliott, J. T. Woodward, K. J. Langenbach, A. Tona, P. L. Jones, and A. L. Plant, Matrix Biol. 24, 489 (2005).

    Article  CAS  Google Scholar 

  15. K. J. Langenbach, J. T. Elliott, A. Tona, D. McDaniel, and A. L. Plant, BMC Biotechnol. 6, 14 (2006).

    Article  Google Scholar 

  16. A. L. Plant, J. T. Elliott, A. Tona, D. McDaniel, and K. J. Langenbach, Methods Mol. Biol. 356, 95 (2007).

    CAS  Google Scholar 

  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, in Numerical Recipies in C: The art of scientific computing, 2nd {nted.}, edited by W. T. Vetterling and B. P. Flannery (Cambridge University Press, Cambridge, England, 1992, p. 623).

    Google Scholar 

  18. Z. E. Perlman, M. D. Slack, Y. Feng, T. J. Mitchison, L. F. Wu, and S. J. Altschuler, Science 306, 1194 (2004).

    Article  CAS  Google Scholar 

  19. J. T. Elliott, A. Tona, and A. L. Plant, Cytometry A 52A, 90 (2003).

    Article  CAS  Google Scholar 

  20. P. L. Jones and M. Rabinovitch, Circ. Res. 79, 1131 (1996).

    CAS  Google Scholar 

  21. M. Chiquet, A. S. Renedo, F. Huber, and M. Fluck, Matrix Biol. 22, 73 (2003).

    Article  CAS  Google Scholar 

  22. T. W. Gilbert, A. M. Stewart-Akers, J. Sydeski, T. D. Nguyen, S. F. Badylak, and S. L. Woo, Tissue Eng. 13, 1313 (2007).

    Article  CAS  Google Scholar 

  23. T. Ichii, H. Koyama, S. Tanaka, S. Kim, A. Shioi, Y. Okuno, E. W. Raines, H. Iwao, S. Otani, and Y. Nishizawa, Circ. Res. 88, 460 (2001).

    CAS  Google Scholar 

  24. I. Mercier, J. P. Lechaire, A. Desmouliere, F. Gaill, and M. Aumailley, Exp. Cell Res. 225, 245 (1996).

    Article  CAS  Google Scholar 

  25. P. Henriet, Z. D. Zhong, P. C. Brooks, K. I. Weinberg, and Y. A. Declerck, Proc. Natl. Acad. Sci. U.S.A. 97, 10026 (2000).

    Article  CAS  Google Scholar 

  26. P. L. Jones, F. S. Jones, B. Zhou, and M. Rabinovitch, J. Cell Sci. 112, 435 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, J.T., Halter, M., Plant, A.L. et al. Evaluating the performance of fibrillar collagen films formed at polystyrene surfaces as cell culture substrates. Biointerphases 3, 19–28 (2008). https://doi.org/10.1116/1.2912936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2912936