Skip to main content


Journal for Biophysical Chemistry

Biointerphases Cover Image

Solid supported lipid membranes: New concepts for the biomimetic functionalization of solid surfaces

Article metrics


Surface-layer (S-layer( supported lipid membranes on solid substrates are interfacial architectures mimicking the supramolecular principle of cell envelopes which have been optimized for billions of years of evolution in most extreme habitats. The authors implement this biological construction principle in a variety of layered supramolecular architectures consisting of a stabilizing protein monolayer and a functional phospholipid bilayer for the design and development of new types of solid-supported biomimetic membranes with a considerably extended stability and lifetime — compared to existing platforms — as required for novel types of bioanalytical sensors. First, Langmuir monolayers of lipids at the water/air interface are used as test beds for the characterization of different types of molecules which all interact with the lipid layers in various ways and, hence, are relevant for the control of the structure, stability, and function of supported membranes. As an example, the interaction of S-layer proteins from the bulk phase with a monolayer of a phospholipid synthetically conjugated with a secondary cell wall polymer (SCWP) was studied as a function of the packing density of the lipids in the monolayer. Furthermore, SCWPs were used as a new molecular construction element. The exploitation of a specific lectin-type bond between the N-terminal part of selected S-layer proteins and a variety of glycans allowed for the buildup of supramolecular assemblies and thus functional membranes with a further increased stability. Next, S-layer proteins were self-assembled and characterized by the surface-sensitive techniques, surface plasmon resonance spectroscopy and quartz crystal microbalance with dissipation monitoring. The substrates were either planar gold or silicon dioxide sensor surfaces. The assembly of S-layer proteins from solution to solid substrates could nicely be followed in-situ and in real time. As a next step toward S-layer supported bilayer membranes, the authors characterized various architectures based on lipid molecules that were modified by a flexible spacer separating the amphiphiles from the anchor group that allows for a covalent coupling of the lipid to a solid support, e.g., using thiols for Au substrates. Impedance spectroscopy confirmed the excellent charge barrier properties of these constructs with a high electrical resistance. Structural details of various types of these tethered bimolecular lipid membranes were studied by using neutron reflectometry. Finally, first attempts are reported to develop a code based on a SPICE network analysis program which is suitable for the quantitative analysis of the transient and steady-state currents passing through these membranes upon the application of a potential gradient.


  1. 1

    Crystalline Bacterial Cell Surface Proteins, edited by U. B. Sleytr, P. Messner, D. Pum, and M. Sára (R. G. Landes/Academic, Austin, TX, 1996).

  2. 2

    U. B. Sleytr and T. J. Beveridge, Trends Microbiol. 7, 253 (1999).

  3. 3

    U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, in Supramolecular Polymers, 2nd ed., edited by A. Ciferri (CRC, Boca Raton, FL/Taylor & Francis, London, 2005), pp. 583–616.

  4. 4(a)

    U. B. Sleytr, D. Messner, D. Pum, and M. Sára, Angew. Chem., Int. Ed. 38, 1034 (1999(;

  5. 4(b)

    U. B. Sleytr, C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer, FEMS Microbiol. Lett. 267, 131 (2007);

  6. 4(c)

    U. B. Sleytr, E. M. Egelseer, N. Ilk, D. Pum, and B. Schuster, FEBS J. 274, 323 (2007).

  7. 5

    M. Sára and U. B. Sleytr, J. Bacteriol. 169, 2804 (1987).

  8. 6

    W. Ries, C. Hotzy, I. Schocher, and U. B. Sleytr, J. Bacteriol. 179, 3892 (1997).

  9. 7

    M. Sàra, C. Dekitsch, H. F. Mayer, E. M. Egelseer, and U. B. Sleytr, J. Bacteriol. 180, 4146 (1998).

  10. 8

    M. Sàra, E. M. Egelseer, C. Dekitsch, and U. B. Sleytr, J. Bacteriol. 180, 6780 (1998(;

  11. 9

    C. Schäffer and P. Messner, Microbiology 151, 643 (2005).

  12. 10

    U. B. Sleytr and P. Messner, in Electron Microscopy of Subcellular Dynamics, edited by H. Plattner (CRCBoca Raton, FL, 1989), pp.13–31.

  13. 11

    D. Pum, M. Weinhandl, C. Hödl, and U. B. Sleytr, J. Bacteriol. 175, 2762 (1993).

  14. 12

    D. Pum and U. B. Sleytr, Supramol. Sci. 2, 193 (1995).

  15. 13

    C. Mader, S. Küpcü, M. Sára, and U. B. Sleytr, Biochim. Biophys. Acta 1418, 106 (1999).

  16. 14

    B. Schuster, D. Pum, and U. B. Sleytr, Biochim. Biophys. Acta 1369, 51 (1998).

  17. 15

    B. Schuster and U. B. Sleytr, Mol. Biotechnol. 74, 233 (2000).

  18. 16

    B. Schuster and U. B. Sleytr, in Advances in Planar Lipid Bilayers and Liposomes, edited by H. T. Tien and A. Ottova (ElsevierAmsterdam, The Netherlands, 2005), Vol. 1, pp. 247–293.

  19. 17

    B. Schuster, Nanobiotechnol. 1, 153 (2005).

  20. 18

    B. Schuster and U. B. Sleytr, Curr. Nanosci. 2, 143 (2006).

  21. 19

    E. Sackmann, Science 271, 43 (1996).

  22. 20

    E. L. Florin and H. E. Gaub, Biophys. J. 64, 375 (1993).

  23. 21

    B. Raguse, V. L. B. Braach-Maksvytis, B. A. Cornell, L. B. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).

  24. 22

    H. Lang, C. Duschl, and H. Vogel, Langmuir 11, 197 (1994).

  25. 23

    A. L. Plant, Langmuir 9, 2764 (1993).

  26. 24

    J. Spinke, J. Yang, H. Wolf, M. Liley, H. Ringsdorf, and W. Knoll, Biophys. J. 63, 1667 (1992).

  27. 25

    B. A. Cornell, V. Braach-Maksvytis, L. G. King, P. D. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997).

  28. 26

    J. T. Groves, N. Ulman, and S. G. Boxer, Science 275, 651 (1997).

  29. 27

    K. Seifert, K. Fendler, and E. Bamberg, Biophys. J. 64, 384 (1993).

  30. 28

    C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

  31. 29

    M. Stelzle, G. Weissmüller, and E. Sackmann, J. Phys. Chem. 97, 2974 (1993).

  32. 30

    C. Huber, N. Ilk, D. Rünzler, E. M. Egelseer, S. Weigert, U. B. Sleytr, and M. Sára, Mol. Microbiol. 55, 197 (2005).

  33. 31

    N. Ilk, P. Kosma, M. Puchberger, E. M. Egelseer, H. F. Mayer, U. B. Sleytr, and M. Sára, J. Bacteriol. 181, 7643 (1999).

  34. 32

    M. Sára, Trends Microbiol. 9, 47 (2001).

  35. 33

    C. Mader, C. Huber, D. Moll, U. B. Sleytr, and M. Sára, J. Bacteriol. 186, 1758 (2004).

  36. 34

    W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).

  37. 35

    M. A. Cooper and V. T. Singleton, J. Mol. Recognit. 20, 154 (2007).

  38. 36

    C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

  39. 37

    F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Proc. Natl. Acad. Sci. U.S.A. 95, 12271 (1998).

  40. 38

    M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

  41. 39

    M. Pisecker, Diploma thesis, Universität für Bodenkultur, Vienna, 2005.

  42. 40

    G. Sauerbrey, Z. Phys. 155, 206 (1959).

  43. 41

    P. C. Gufler, D. Pum, U. B. Sleytr, and B. Schuster, Biochim. Biophys. Acta 1661, 154 (2004(

  44. 42

    B. Schuster, D. Pum, M. Sára, O. Braha, H. Bayley, and U. B. Sleytr, Langmuir 17, 499 (2001).

  45. 43

    B. Schuster, S. Weigert, D. Pum, M. Sára, and U. B. Sleytr, Langmuir 19, 2392 (2003).

  46. 44

    R. Naumann, S. M. Schiller, F. Giess, B. Grohe, K. B. Hartman, I. Karcher, I. Köper, J. Lubben, K. Vasilev, and W. Knoll, Langmuir 19, 5435 (2003).

  47. 45

    S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).

  48. 46

    D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, and M. Lösche, BioInterphases 2, 21, (2007)..

  49. 47

    G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).

  50. 48

    J. A. Dura, D. Pierce, C. F. Majkrzak, N. Maliszewskyj, D. J. McGillivray, M. Lösche, K. V. O’Donovan, M. Mihailescu, U. A. Perez-Salas, D. L. Worcester, and S. H. White, Rev. Sci. Instrum. 77, 074301 (2006).

  51. 49

    F. Heinrich, T. Ng, D. J. Vanderah, P. Shekhar, M. Mihailescu, H. Nanda, and M. Lösche, Langmuir 25 (2009), in press.

  52. 50

    D. Vaknin, K. Kjaer, J. Als-Nielsen, and M. Lösche, Biophys. J. 59, 1325, (1991).

  53. 51

    M. C. Wiener and S. H. White, Biophys. J. 59, 174 (1991).

  54. 52

    P. A. Kienzle, M. Doucet, D. J. McGillivray, K. V. O’Donovan, N. F. Berk, and C. F. Majkrzak, ga_refl (2000–2009),

  55. 53

    D. J. McGillivray, F. Heinrich, I. Ignatiev, D. J. Vanderah, J. J. Kasianowicz, G. Valincius, and M. Lösche, Biophys. J. (in press).

  56. 54

    G. Valincius, F. Heinrich, R. Budvytyte, D. J. Vanderah, D.. J. McGillivray, Y. Sokolov, J. E.Hall, and M. Lösche, Biophys. J. 95, 4845 (2008).

  57. 55

    R. Naumann, D. Walz, S. M. Schiller, and W. Knoll, J. Electroanal. Chem. 550-551, 241 (2003).

  58. 56

    D. Walz, S. R. Caplan, D. R. L. Scriven, and D. C. Miculecky, Bioelectrochemistry: Principles and Practice, edited by S. R. Caplan, I. R. Miller, and G. Milazzo(Birkhäuser, Basel, 1995), Vol. 1, Chap. 2.

  59. 57

    J. W. F. Robertson, M. G. Friedrich, A. Lubrom, W. Knoll, R. L. C. Naumann, and D. Walz, J. Phys. Chem. B 112, 10475 (2008).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article