Skip to main content

Journal for Biophysical Chemistry

Solid supported lipid membranes: New concepts for the biomimetic functionalization of solid surfaces

Abstract

Surface-layer (S-layer( supported lipid membranes on solid substrates are interfacial architectures mimicking the supramolecular principle of cell envelopes which have been optimized for billions of years of evolution in most extreme habitats. The authors implement this biological construction principle in a variety of layered supramolecular architectures consisting of a stabilizing protein monolayer and a functional phospholipid bilayer for the design and development of new types of solid-supported biomimetic membranes with a considerably extended stability and lifetime — compared to existing platforms — as required for novel types of bioanalytical sensors. First, Langmuir monolayers of lipids at the water/air interface are used as test beds for the characterization of different types of molecules which all interact with the lipid layers in various ways and, hence, are relevant for the control of the structure, stability, and function of supported membranes. As an example, the interaction of S-layer proteins from the bulk phase with a monolayer of a phospholipid synthetically conjugated with a secondary cell wall polymer (SCWP) was studied as a function of the packing density of the lipids in the monolayer. Furthermore, SCWPs were used as a new molecular construction element. The exploitation of a specific lectin-type bond between the N-terminal part of selected S-layer proteins and a variety of glycans allowed for the buildup of supramolecular assemblies and thus functional membranes with a further increased stability. Next, S-layer proteins were self-assembled and characterized by the surface-sensitive techniques, surface plasmon resonance spectroscopy and quartz crystal microbalance with dissipation monitoring. The substrates were either planar gold or silicon dioxide sensor surfaces. The assembly of S-layer proteins from solution to solid substrates could nicely be followed in-situ and in real time. As a next step toward S-layer supported bilayer membranes, the authors characterized various architectures based on lipid molecules that were modified by a flexible spacer separating the amphiphiles from the anchor group that allows for a covalent coupling of the lipid to a solid support, e.g., using thiols for Au substrates. Impedance spectroscopy confirmed the excellent charge barrier properties of these constructs with a high electrical resistance. Structural details of various types of these tethered bimolecular lipid membranes were studied by using neutron reflectometry. Finally, first attempts are reported to develop a code based on a SPICE network analysis program which is suitable for the quantitative analysis of the transient and steady-state currents passing through these membranes upon the application of a potential gradient.

References

  1. Crystalline Bacterial Cell Surface Proteins, edited by U. B. Sleytr, P. Messner, D. Pum, and M. Sára (R. G. Landes/Academic, Austin, TX, 1996).

  2. U. B. Sleytr and T. J. Beveridge, Trends Microbiol. 7, 253 (1999).

    Article  CAS  Google Scholar 

  3. U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, in Supramolecular Polymers, 2nd ed., edited by A. Ciferri (CRC, Boca Raton, FL/Taylor & Francis, London, 2005), pp. 583–616.

    Google Scholar 

  4. U. B. Sleytr, D. Messner, D. Pum, and M. Sára, Angew. Chem., Int. Ed. 38, 1034 (1999(;

    Article  CAS  Google Scholar 

  5. U. B. Sleytr, C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer, FEMS Microbiol. Lett. 267, 131 (2007);

    Article  CAS  Google Scholar 

  6. U. B. Sleytr, E. M. Egelseer, N. Ilk, D. Pum, and B. Schuster, FEBS J. 274, 323 (2007).

    Article  CAS  Google Scholar 

  7. M. Sára and U. B. Sleytr, J. Bacteriol. 169, 2804 (1987).

    Google Scholar 

  8. W. Ries, C. Hotzy, I. Schocher, and U. B. Sleytr, J. Bacteriol. 179, 3892 (1997).

    CAS  Google Scholar 

  9. M. SĂ ra, C. Dekitsch, H. F. Mayer, E. M. Egelseer, and U. B. Sleytr, J. Bacteriol. 180, 4146 (1998).

    Google Scholar 

  10. M. SĂ ra, E. M. Egelseer, C. Dekitsch, and U. B. Sleytr, J. Bacteriol. 180, 6780 (1998(;

    Google Scholar 

  11. C. Schäffer and P. Messner, Microbiology 151, 643 (2005).

    Article  Google Scholar 

  12. U. B. Sleytr and P. Messner, in Electron Microscopy of Subcellular Dynamics, edited by H. Plattner (CRCBoca Raton, FL, 1989), pp.13–31.

    Google Scholar 

  13. D. Pum, M. Weinhandl, C. Hödl, and U. B. Sleytr, J. Bacteriol. 175, 2762 (1993).

    CAS  Google Scholar 

  14. D. Pum and U. B. Sleytr, Supramol. Sci. 2, 193 (1995).

    Article  CAS  Google Scholar 

  15. C. Mader, S. Küpcü, M. Sára, and U. B. Sleytr, Biochim. Biophys. Acta 1418, 106 (1999).

    Article  CAS  Google Scholar 

  16. B. Schuster, D. Pum, and U. B. Sleytr, Biochim. Biophys. Acta 1369, 51 (1998).

    Article  CAS  Google Scholar 

  17. B. Schuster and U. B. Sleytr, Mol. Biotechnol. 74, 233 (2000).

    Article  CAS  Google Scholar 

  18. B. Schuster and U. B. Sleytr, in Advances in Planar Lipid Bilayers and Liposomes, edited by H. T. Tien and A. Ottova (ElsevierAmsterdam, The Netherlands, 2005), Vol. 1, pp. 247–293.

    Chapter  Google Scholar 

  19. B. Schuster, Nanobiotechnol. 1, 153 (2005).

    Article  CAS  Google Scholar 

  20. B. Schuster and U. B. Sleytr, Curr. Nanosci. 2, 143 (2006).

    Article  CAS  Google Scholar 

  21. E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  22. E. L. Florin and H. E. Gaub, Biophys. J. 64, 375 (1993).

    Article  CAS  Google Scholar 

  23. B. Raguse, V. L. B. Braach-Maksvytis, B. A. Cornell, L. B. King, P. D. J. Osman, R. J. Pace, and L. Wieczorek, Langmuir 14, 648 (1998).

    Article  CAS  Google Scholar 

  24. H. Lang, C. Duschl, and H. Vogel, Langmuir 11, 197 (1994).

    Article  Google Scholar 

  25. A. L. Plant, Langmuir 9, 2764 (1993).

    Article  CAS  Google Scholar 

  26. J. Spinke, J. Yang, H. Wolf, M. Liley, H. Ringsdorf, and W. Knoll, Biophys. J. 63, 1667 (1992).

    Article  CAS  Google Scholar 

  27. B. A. Cornell, V. Braach-Maksvytis, L. G. King, P. D. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature (London) 387, 580 (1997).

    Article  CAS  Google Scholar 

  28. J. T. Groves, N. Ulman, and S. G. Boxer, Science 275, 651 (1997).

    Article  CAS  Google Scholar 

  29. K. Seifert, K. Fendler, and E. Bamberg, Biophys. J. 64, 384 (1993).

    Article  CAS  Google Scholar 

  30. C. Steinem, A. Janshoff, W. P. Ulrich, M. Sieber, and H. J. Galla, Biochim. Biophys. Acta 1279, 169 (1996).

    Article  Google Scholar 

  31. M. Stelzle, G. WeissmĂĽller, and E. Sackmann, J. Phys. Chem. 97, 2974 (1993).

    Article  CAS  Google Scholar 

  32. C. Huber, N. Ilk, D. Rünzler, E. M. Egelseer, S. Weigert, U. B. Sleytr, and M. Sára, Mol. Microbiol. 55, 197 (2005).

    Article  CAS  Google Scholar 

  33. N. Ilk, P. Kosma, M. Puchberger, E. M. Egelseer, H. F. Mayer, U. B. Sleytr, and M. Sára, J. Bacteriol. 181, 7643 (1999).

    CAS  Google Scholar 

  34. M. Sára, Trends Microbiol. 9, 47 (2001).

    Article  Google Scholar 

  35. C. Mader, C. Huber, D. Moll, U. B. Sleytr, and M. Sára, J. Bacteriol. 186, 1758 (2004).

    Article  CAS  Google Scholar 

  36. W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).

    Article  CAS  Google Scholar 

  37. M. A. Cooper and V. T. Singleton, J. Mol. Recognit. 20, 154 (2007).

    Article  CAS  Google Scholar 

  38. C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).

    Article  CAS  Google Scholar 

  39. F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, Proc. Natl. Acad. Sci. U.S.A. 95, 12271 (1998).

    Article  Google Scholar 

  40. M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).

    Article  CAS  Google Scholar 

  41. M. Pisecker, Diploma thesis, Universität für Bodenkultur, Vienna, 2005.

    Google Scholar 

  42. G. Sauerbrey, Z. Phys. 155, 206 (1959).

    Article  CAS  Google Scholar 

  43. P. C. Gufler, D. Pum, U. B. Sleytr, and B. Schuster, Biochim. Biophys. Acta 1661, 154 (2004(

    Article  CAS  Google Scholar 

  44. B. Schuster, D. Pum, M. Sára, O. Braha, H. Bayley, and U. B. Sleytr, Langmuir 17, 499 (2001).

    Article  CAS  Google Scholar 

  45. B. Schuster, S. Weigert, D. Pum, M. Sára, and U. B. Sleytr, Langmuir 19, 2392 (2003).

    Article  CAS  Google Scholar 

  46. R. Naumann, S. M. Schiller, F. Giess, B. Grohe, K. B. Hartman, I. Karcher, I. Köper, J. Lubben, K. Vasilev, and W. Knoll, Langmuir 19, 5435 (2003).

    Article  CAS  Google Scholar 

  47. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).

    Article  CAS  Google Scholar 

  48. D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, and M. Lösche, BioInterphases 2, 21, (2007)..

    Article  CAS  Google Scholar 

  49. G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).

    Article  CAS  Google Scholar 

  50. J. A. Dura, D. Pierce, C. F. Majkrzak, N. Maliszewskyj, D. J. McGillivray, M. Lösche, K. V. O’Donovan, M. Mihailescu, U. A. Perez-Salas, D. L. Worcester, and S. H. White, Rev. Sci. Instrum. 77, 074301 (2006).

    Article  Google Scholar 

  51. F. Heinrich, T. Ng, D. J. Vanderah, P. Shekhar, M. Mihailescu, H. Nanda, and M. Lösche, Langmuir 25 (2009), in press.

  52. D. Vaknin, K. Kjaer, J. Als-Nielsen, and M. Lösche, Biophys. J. 59, 1325, (1991).

    Article  CAS  Google Scholar 

  53. M. C. Wiener and S. H. White, Biophys. J. 59, 174 (1991).

    Article  CAS  Google Scholar 

  54. P. A. Kienzle, M. Doucet, D. J. McGillivray, K. V. O’Donovan, N. F. Berk, and C. F. Majkrzak, ga_refl (2000–2009), http://www.ncnr.nist.gov/reflpak/garefl.html..

  55. D. J. McGillivray, F. Heinrich, I. Ignatiev, D. J. Vanderah, J. J. Kasianowicz, G. Valincius, and M. Lösche, Biophys. J. (in press).

  56. G. Valincius, F. Heinrich, R. Budvytyte, D. J. Vanderah, D.. J. McGillivray, Y. Sokolov, J. E.Hall, and M. Lösche, Biophys. J. 95, 4845 (2008).

    Article  CAS  Google Scholar 

  57. R. Naumann, D. Walz, S. M. Schiller, and W. Knoll, J. Electroanal. Chem. 550-551, 241 (2003).

    Article  CAS  Google Scholar 

  58. D. Walz, S. R. Caplan, D. R. L. Scriven, and D. C. Miculecky, Bioelectrochemistry: Principles and Practice, edited by S. R. Caplan, I. R. Miller, and G. Milazzo(Birkhäuser, Basel, 1995), Vol. 1, Chap. 2.

    Google Scholar 

  59. J. W. F. Robertson, M. G. Friedrich, A. Lubrom, W. Knoll, R. L. C. Naumann, and D. Walz, J. Phys. Chem. B 112, 10475 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoll, W., Naumann, R., Friedrich, M. et al. Solid supported lipid membranes: New concepts for the biomimetic functionalization of solid surfaces. Biointerphases 3, FA125–FA135 (2008). https://doi.org/10.1116/1.2913612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2913612