Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Fluctuations and destabilization of single phospholipid bilayers

Article metrics

  • 526 Accesses

  • 12 Citations

Abstract

Supported phospholipid bilayers are interesting model systems for biologists and present fascinating physical properties. The authors present an extensive experimental study of the dynamic properties of supported bilayers. The structure and the equilibrium properties of single and double supported bilayers were investigated with neutron reflectivity. The submicronic fluctuation spectrum of a nearly free “floating” bilayer was determined using off-specular x-ray scattering: the surface tension of the bilayer, its bending modulus, and the intermembrane potential could be determined. Using fluorescence microscopy, the authors showed that this well-controlled single bilayer can form vesicles. Destabilization occurred either at the main gel-fluid transition of the lipids and could be interpreted in terms of a decrease in the bending rigidity or under an ac low-frequency electric field applied in the fluid phase. In the latter case, the authors also studied the effect of the electric field at the molecular length scale by neutron reflectivity. In both cases, destabilization leads to the formation of relatively monodisperse vesicles. This could give further understanding on the vesicle formation mechanism and on the parameters that determine the vesicle size.

References

  1. 1

    L. Auvray, J. Charvolin, and J. Di Micoli (unpublished).

  2. 2

    G. Porte, Cours sur les Sytèmes Moléculaires Organisés, Ecole dété, Les Houches, 1996 (unpublished).

  3. 3

    J. Seddon and R. Templer, Structure and Dynamics of Membranes: From Cells to Vesicles (Springer, New York, 1995), Vol. 1A.

  4. 4

    E. Sackmann, Science 271, 43 (1996).

  5. 5

    T. Charitat, E. Bellet-Amalric, G. Fragneto, and F. Graner, Eur. Phys. J. B 8, 583 (1999).

  6. 6

    T. H. Watts, A. A. Brian, J. W. Kappler, P. Marrack, and H. M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 81, 7564 (1984).

  7. 7

    R. Richter and A. Brisson, Biophys. J. 88, 3422 (2005).

  8. 8

    J. Katsaras and T. Gutberlet, Lipid Bilayers, Biological Physics Series (Springer, New York, 2000).

  9. 9

    R. Lipowsky, Handbook of Biological Physics (Elsevier, New York, 1995), Vol. 1.

  10. 10

    O. Mouritsen and O. Andersen, In Search of a New Biomembrane Model, Biologiske Skrifter (The Royal Danish Academy of Science and Letters, Copenhagen, 1998).

  11. 11

    P. Canham, J. Theor. Biol. 26, 61 1970.

  12. 12

    W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

  13. 13

    J. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).

  14. 14

    J. F. Nagle and S. Tristram-Nagle, Curr. Opin. Struct. Biol. 10, 474 (2000).

  15. 15

    D. Constantin, U. Mennicke, C. Li, and T. Salditt, Eur. Phys. J. E 12, 283 (2003).

  16. 16

    T. Salditt, C. Münster, C. Mennicke, U. Ollinger, and G. Fragneto, Langmuir 19, 7703 (2003).

  17. 17

    J. Lemmich, K. Mortensen, J. H. Ipsen, T. Hönger, R. Bauer, and O. Mouritsen, Phys. Rev. E 53, 5169 1996.

  18. 18

    J. Nagle, R. Zhang, S. Tristam-Nagle, W. Sun, H. Petrache, and R. Suter, Biophys. J. 70, 1419 (1996).

  19. 19

    T. Salditt, C. Li, A. Spaar, and U. Mennicke, Eur. Phys. J. E 7, 105 (2002).

  20. 20

    J. Daillant, E. Bellet-Amalric, A. Braslau, T. Charitat, G. Fragneto, F. Graner, S. Mora, F. Rieutord, and B. Stidder, Proc. Natl. Acad. Sci. U.S.A. 102, 11639 (2005).

  21. 21

    C. E. Miller, J. Majewski, T. Gog, and T. L. Kuhl, Phys. Rev. Lett. 94, 238104 (2005).

  22. 22

    C. E. Miller, J. Majewski, E. B. Watkins, D. J. Mulder, T. Gog, and T. L. Kuhl, Phys. Rev. Lett. 100, 058103 (2008).

  23. 23

    E. Sackmann, Handbook of Biological Physics (Elsevier Science, New York, 1995), pp. 213–303.

  24. 24

    M. C. Rheinstädter, C. Ollinger, G. Fragneto, and T. Salditt, Phys. Rev. Lett. 93, 108107 (2004).

  25. 25

    M. C. Rheinstädter, T. Seydel, and F. Demmel, Phys. Rev. E 71, 061908 (2005).

  26. 26

    J. S. Hub, S. T. M. C. Rheinstädter, and B. L. de Groot, Biophys. J. 93, 3156 (2007).

  27. 27

    T. Heimburg, Biochim. Biophys. Acta 1415, 147 (1998).

  28. 28

    J. Pécréaux, H.-G. Döbereiner, J. Prost, J. F. Joanny, and P. Bassereau, Eur. Phys. J. E 13, 277 (2004).

  29. 29

    J. B. Manneville, P. Bassereau, S. Ramaswamy, and J. Prost, Phys. Rev. E 64, 021908 (2001).

  30. 30

    X. Michalet, D. Bensimon, and B. Fourcade, Phys. Rev. Lett. 72, 168 (1994).

  31. 31

    P. Sens and H. Isambert, Phys. Rev. Lett. 88, 128102 (2002).

  32. 32

    W. Helfrich, Z. Naturforsch. 28c, 510 (1974).

  33. 33

    L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).

  34. 34

    F. David and S. Leibler, J. Phys. II 1, 959 (1991).

  35. 35

    D. Sornette and N. Ostrowsky, Micelles, Membranes, Microemulsions, and Monolayers (Springer, New York, 1994).

  36. 36

    X. Michalet, Ph.D. thesis, Université Paris VII, 1994.

  37. 37

    F. Brochard and J.-F. Lennon, J. Phys. Paris 36, 1035 1975.

  38. 38

    D. Morse, Phys. Rev. E 50, 2423 (1994).

  39. 39

    W. Helfrich, Z. Naturforsch., A: Phys. Sci. 33, 305 (1978).

  40. 40

    R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56, 2541 (1986).

  41. 41

    S. Leibler and R. Lipowsky, Phys. Rev. B 35, 7004 (1987).

  42. 42

    U. Seifert, Phys. Rev. Lett. 74, 5060 (1995).

  43. 43

    K. R. Mecke, T. Charitat, and F. Graner, Langmuir 19, 2080 (2003).

  44. 44

    J. Prost, J.-B. Manneville, and R. Bruinsma, Eur. Phys. J. B 1, 465 (1998).

  45. 45

    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2007).

  46. 46

    C. Leidy, T. Kaasgaard, J. H. Crowe, O. Mouritsen, and K. Jørgensen, Biophys. J. 83, 2625 (2002).

  47. 47

    M. Wagner and L. Tamm, Biophys. J. 79, 1400 (2000).

  48. 48

    E. Sinner and W. Knoll, Curr. Opin. Chem. Biol. 5, 705 (2001).

  49. 49

    A. V. Hughes, A. Goldar, M. C. Gestenberg, S. J. Roser, and J. Bradshaw, Phys. Chem. Chem. Phys. 4, 2371 (2002).

  50. 50

    G. Fragneto, E. Bellet-Amalric, T. Charitat, P. Dubos, F. Graner, and L. Perino-Galice, Physica B Amsterdam 276-278, 501 (2000).

  51. 51

    G. Fragneto, T. Charitat, E. Bellet-Amalric, R. Cubitt, and F. Graner, Langmuir 19, 7695 (2003).

  52. 52

    European Synchotron Research Facilities, beam line BM 32, http://www.esrf.fr/exp_facilities/BM32/index.htm

  53. 53

    J. Daillant and M. Alba, Rep. Prog. Phys. 63, 1725 (2000).

  54. 54

    J. Daillant and A. Sentenac, in X-ray and Neutron Reflectivity: Principles and Applications, Lecture Notes in Physics Vol. 58, edited by J. Daillant and A. Gibaud Springer-Verlag, Heidelberg, 1999, pp. 121–162.

  55. 55

    P. Bassereau and F. Pincet, Langmuir 13, 7003 (1997).

  56. 56

    T. Heimburg, Planar Lipid Bilayers (BLMs) and Their Applications (Elsevier, Amsterdam, 2003), pp. 269–293.

  57. 57

    G. Palasantzas, Phys. Rev. B 48, 14472 (1993).

  58. 58

    R. P. Rand, D. Chapman, and K. Larsson, Biophys. J. 15, 1117 (1975).

  59. 59

    T. Heimburg, Biophys. J. 78, 1154 (2000).

  60. 60

    J. N. Israelachvili and H. Wennerstrom, J. Phys. Chem. 96, 520 (1992).

  61. 61

    T. Heimburg, Planar Lipid Bilayers (BLMs) and Their Applications) (Elsevier, Amsterdam, 2003), pp. 269–293.

  62. 62

    S. Lecuyer and T. Charitat, Europhys. Lett. 75, 652 (2006).

  63. 63

    R. Dimova, B. Pouligny, and C. Dietrich, Biophys. J. 79, 340 (2000).

  64. 64

    P. Méléard, C. Gerbaud, T. Pott, L. Fernandes-Puente, I. Bivas, M. Mitov, J. Dufourcq, and P. Bothorel, Biophys. J. 72, 2616 (1997).

  65. 65

    K. Mishima, S. Nakamae, H. Ohshima, and T. Kondo, Chem. Phys. Lipids 110, 27 (2001).

  66. 66

    P. S. Swain and D. Andelman, Langmuir 15, 8902 (1999).

  67. 67

    J. C. Weaver and Y. A. Chizmadzhev, Bioelectrochem. Bioenerg. 41, 135 (1996).

  68. 68

    H. Isambert, Phys. Rev. Lett. 80, 3404 (1998)

  69. 69

    Y. Rosemberg and R. Korenstein, Bioelectrochem. Bioenerg. 42, 275 1997.

  70. 70

    M. I. Angelova and D. Dimitrov, Faraday Discuss. Chem. Soc. 81, 303 (1986).

  71. 71

    M. I. Angelova, S. Soleau, P. Méléard, J.-F. Faucon, and P. Bothorel, Prog. Colloid Polym. Sci. 89, 127 (1992).

  72. 72

    D. Constantin, C. Ollinger, M. Vogel, and T. Salditt, Eur. Phys. J. E 18, 273 (2005).

  73. 73

    S. Lecuyer, G. Fragneto, and T. Charitat, Eur. Phys. J. E 21, 153 (2006).

  74. 74

    S. Lecuyer and T. Charitat (unpublished).

  75. 75

    R. Cubitt and G. Fragneto, Appl. Phys. A A74, S329 (2002).

  76. 76

    G. Fragneto, T. Charitat, F. Graner, K. Mecke, L. Perino-Gallice, and E. Bellet-Amalric, Europhys. Lett. 53, 100 (2001).

  77. 77

    C.-H. Lee, W.-C. Lin, and J. Wang, Phys. Rev. E 64, 020901 (2001).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article