Skip to main content

Journal for Biophysical Chemistry

Protein tethered lipid bilayer: An alternative mimic of the biological membrane (Mini Review)

Abstract

An overview is given about results obtained so far with an alternative concept of solid-supported tethered lipid bilayers for the functional incorporation of membrane proteins. The incorporated protein itself acts as the tethering molecule resulting in a versatile system where the protein determines the characteristics of submembraneous space. This architecture is achieved through a metal chelating surface, onto which histidine-tagged (his-tagged) membrane proteins are able to bind in a reversible manner. The tethered bilayer membrane is generated by substitution of protein bund detergent molecules with lipids using in situ dialysis or adsorption. Histidine-tagged ctochrome c oxidase is used as a model protein in this study. However, the system should be applicable to all recombinant membrane proteins bearing a terminal his tag. The system is particularly designed, among other surface-analytical techniques, for a combined application of electrochemical and vibrational spectroscopy measurements.

References

  1. L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

    Article  CAS  Google Scholar 

  2. E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).

    Article  CAS  Google Scholar 

  3. J. K. Cullison, F. M. Hawkridge, N. Nakashima, and Sh. Yoshikawa, Langmuir 10, 877 (1994).

    Article  CAS  Google Scholar 

  4. R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M. R. Moncelli, and F. T. Buoninsegni, J. Electroanal. Chem. 504, 1 (2001).

    Article  CAS  Google Scholar 

  5. W. Knoll, K. Morigaki, R. Naumann, B. Sacca, S. Schiller, and E. K. Sinner, in Ultrathin Electrochemical Chemo- and Biosensors, Technology and Performance, edited by V. M. Mirsky (Springer-Verlag, Berlin, 2004), 239.

    Google Scholar 

  6. M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

    Article  CAS  Google Scholar 

  7. E. Sackmann, Science 271, 43 (1996).

    Article  CAS  Google Scholar 

  8. H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15, 8451 (1999).

    Article  CAS  Google Scholar 

  9. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).

    Article  CAS  Google Scholar 

  10. F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, Biophys. J. 87, 3213 (2004).

    Article  CAS  Google Scholar 

  11. K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, and J. Heberle, J. Am. Chem. Soc. 126, 16199 (2004).

    Article  CAS  Google Scholar 

  12. M. G. Friedrich, M. A. Plum, M. G. Santonicola, nV. U. Kirste, W. Knoll, B. Ludwig, and R. L. C. Naumann, Biophys. J. (to be published).

  13. M. G. Friedrich, J. W. F. Robertson, D. Walz, W. Knoll, and R. L. C. Naumann, Biophys. J. (in press).

  14. M.G. Friedrich, F. Giess, R. Naumann, W. Knoll, K. Ataka, J. Heberle, J. Hrabakova, D. H. Murgida, and P. Hildebrandt, Chem. Commun. (Cambridge) 2004, 2376.

  15. M. G. Friedrich, V. U. Kirste, J. Zhu, R. B. Gennis, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. B (in press).

  16. O.-M. H. Richter and B. Ludwig, Rev. Physiol. Biochem. Pharmacol. 147, 47 (2003).

    Article  CAS  Google Scholar 

  17. D. M. Mitchell and R. B. Gennis, FEBS Lett. 368, 148 (1995).

    Article  CAS  Google Scholar 

  18. S. J. Döpner, B. Hudecek, B. Ludwig, H. Witt, and P. Hildebrandt, Biochim. Biophys. Acta 1480, 57 (2000).

    Article  Google Scholar 

  19. G. E. Heibel, P. Hildebrandt, B. Ludwig, P. Steinrücke, T. Soulimane, and G. Buse, Biochemistry 32, 10866 (1993).

    Article  CAS  Google Scholar 

  20. Unpublished results.

  21. E. A. Gorbikova, K. Vuorilehto, M. Wikström, and M. I. Verkhovsky, Biochemistry 45, 5641 (2006).

    Article  CAS  Google Scholar 

  22. F. A. Armstrong, J. Chem. Soc. Dalton Trans. 661 (2002).

  23. L. J. C. Jeuken, J. P. McEvoy, and F. A. Armstrong, J. Phys. Chem. B 106, 2304 (2002).

    Article  CAS  Google Scholar 

  24. E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 101, 19 (1979).

    Article  CAS  Google Scholar 

  25. L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).

    Article  CAS  Google Scholar 

  26. L. J. C. Jeuken, Biochim. Biophys. Acta 1604, 67 (2003).

    Article  CAS  Google Scholar 

  27. J. Hirst, J. L. C. Duff, G. N. L. Jameson, M. A. Kemper, B. K. Burgess, and F. A. Armstrong, J. Am. Chem. Soc. 120, 7085 (1998).

    Article  CAS  Google Scholar 

  28. J. R. Winkler, B. G. Malmström, and H. B. Gray, Biophys. Chem. 54, 199 (1995).

    Article  CAS  Google Scholar 

  29. K. Kobayashi, H. Une, and K. Hayashi, J. Biol. Chem. 264, 7976 (1989).

    CAS  Google Scholar 

  30. T. Nilsson, Proc. Natl. Acad. Sci. U.S.A. 89, 6497 (1992).

    Article  CAS  Google Scholar 

  31. M. Ruitenberg, A. Kannt, E. Bamberg, K. Fendler, and H. Michel, Nature (London) 417, 99 (2002).

    CAS  Google Scholar 

  32. H. Michel, Biochemistry 38, 15129 (1999).

    Article  CAS  Google Scholar 

  33. M. I. Verkhovsky, A. Jasaitis, M. L. Verkhovskaya, J. E. Morgan, and M. Wikström, Nature (London) 400, 480 (1999).

    Article  CAS  Google Scholar 

  34. M. I. Verkhovsky, I. Belevich, D. A. Bloch, and M. Wikström, Biochim. Biophys. Acta 1757, 401 (2006).

    Article  CAS  Google Scholar 

  35. K. Faxen, G. Gilderson, P. Adelroth, and P. Brzezinski, Nature (London) 437, 286 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, R.L.C., Knoll, W. Protein tethered lipid bilayer: An alternative mimic of the biological membrane (Mini Review). Biointerphases 3, FA101–FA107 (2008). https://doi.org/10.1116/1.2936939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2936939