Skip to content


Journal for Biophysical Chemistry

Biointerphases Cover Image
  • Open Access

Protein tethered lipid bilayer: An alternative mimic of the biological membrane (Mini Review)

  • 1 and
  • 1

  • Received: 23 January 2008
  • Accepted: 11 July 2008


An overview is given about results obtained so far with an alternative concept of solid-supported tethered lipid bilayers for the functional incorporation of membrane proteins. The incorporated protein itself acts as the tethering molecule resulting in a versatile system where the protein determines the characteristics of submembraneous space. This architecture is achieved through a metal chelating surface, onto which histidine-tagged (his-tagged) membrane proteins are able to bind in a reversible manner. The tethered bilayer membrane is generated by substitution of protein bund detergent molecules with lipids using in situ dialysis or adsorption. Histidine-tagged ctochrome c oxidase is used as a model protein in this study. However, the system should be applicable to all recombinant membrane proteins bearing a terminal his tag. The system is particularly designed, among other surface-analytical techniques, for a combined application of electrochemical and vibrational spectroscopy measurements.

Authors’ Affiliations

Max Planck Institute for Polymer Research, 55128 Mainz, Germany


  1. L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).View ArticleGoogle Scholar
  2. E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).View ArticleGoogle Scholar
  3. J. K. Cullison, F. M. Hawkridge, N. Nakashima, and Sh. Yoshikawa, Langmuir 10, 877 (1994).View ArticleGoogle Scholar
  4. R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M. R. Moncelli, and F. T. Buoninsegni, J. Electroanal. Chem. 504, 1 (2001).View ArticleGoogle Scholar
  5. W. Knoll, K. Morigaki, R. Naumann, B. Sacca, S. Schiller, and E. K. Sinner, in Ultrathin Electrochemical Chemo- and Biosensors, Technology and Performance, edited by V. M. Mirsky (Springer-Verlag, Berlin, 2004), 239.Google Scholar
  6. M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).View ArticleGoogle Scholar
  7. E. Sackmann, Science 271, 43 (1996).View ArticleGoogle Scholar
  8. H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15, 8451 (1999).View ArticleGoogle Scholar
  9. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).View ArticleGoogle Scholar
  10. F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, Biophys. J. 87, 3213 (2004).View ArticleGoogle Scholar
  11. K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, and J. Heberle, J. Am. Chem. Soc. 126, 16199 (2004).View ArticleGoogle Scholar
  12. M. G. Friedrich, M. A. Plum, M. G. Santonicola, nV. U. Kirste, W. Knoll, B. Ludwig, and R. L. C. Naumann, Biophys. J. (to be published).Google Scholar
  13. M. G. Friedrich, J. W. F. Robertson, D. Walz, W. Knoll, and R. L. C. Naumann, Biophys. J. (in press).Google Scholar
  14. M.G. Friedrich, F. Giess, R. Naumann, W. Knoll, K. Ataka, J. Heberle, J. Hrabakova, D. H. Murgida, and P. Hildebrandt, Chem. Commun. (Cambridge) 2004, 2376.Google Scholar
  15. M. G. Friedrich, V. U. Kirste, J. Zhu, R. B. Gennis, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. B (in press).Google Scholar
  16. O.-M. H. Richter and B. Ludwig, Rev. Physiol. Biochem. Pharmacol. 147, 47 (2003).View ArticleGoogle Scholar
  17. D. M. Mitchell and R. B. Gennis, FEBS Lett. 368, 148 (1995).View ArticleGoogle Scholar
  18. S. J. Döpner, B. Hudecek, B. Ludwig, H. Witt, and P. Hildebrandt, Biochim. Biophys. Acta 1480, 57 (2000).View ArticleGoogle Scholar
  19. G. E. Heibel, P. Hildebrandt, B. Ludwig, P. Steinrücke, T. Soulimane, and G. Buse, Biochemistry 32, 10866 (1993).View ArticleGoogle Scholar
  20. Unpublished results.Google Scholar
  21. E. A. Gorbikova, K. Vuorilehto, M. Wikström, and M. I. Verkhovsky, Biochemistry 45, 5641 (2006).View ArticleGoogle Scholar
  22. F. A. Armstrong, J. Chem. Soc. Dalton Trans. 661 (2002).Google Scholar
  23. L. J. C. Jeuken, J. P. McEvoy, and F. A. Armstrong, J. Phys. Chem. B 106, 2304 (2002).View ArticleGoogle Scholar
  24. E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 101, 19 (1979).View ArticleGoogle Scholar
  25. L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).View ArticleGoogle Scholar
  26. L. J. C. Jeuken, Biochim. Biophys. Acta 1604, 67 (2003).View ArticleGoogle Scholar
  27. J. Hirst, J. L. C. Duff, G. N. L. Jameson, M. A. Kemper, B. K. Burgess, and F. A. Armstrong, J. Am. Chem. Soc. 120, 7085 (1998).View ArticleGoogle Scholar
  28. J. R. Winkler, B. G. Malmström, and H. B. Gray, Biophys. Chem. 54, 199 (1995).View ArticleGoogle Scholar
  29. K. Kobayashi, H. Une, and K. Hayashi, J. Biol. Chem. 264, 7976 (1989).Google Scholar
  30. T. Nilsson, Proc. Natl. Acad. Sci. U.S.A. 89, 6497 (1992).View ArticleGoogle Scholar
  31. M. Ruitenberg, A. Kannt, E. Bamberg, K. Fendler, and H. Michel, Nature (London) 417, 99 (2002).Google Scholar
  32. H. Michel, Biochemistry 38, 15129 (1999).View ArticleGoogle Scholar
  33. M. I. Verkhovsky, A. Jasaitis, M. L. Verkhovskaya, J. E. Morgan, and M. Wikström, Nature (London) 400, 480 (1999).View ArticleGoogle Scholar
  34. M. I. Verkhovsky, I. Belevich, D. A. Bloch, and M. Wikström, Biochim. Biophys. Acta 1757, 401 (2006).View ArticleGoogle Scholar
  35. K. Faxen, G. Gilderson, P. Adelroth, and P. Brzezinski, Nature (London) 437, 286 (2005).View ArticleGoogle Scholar


© American Vacuum Society 2008