Skip to main content


Journal for Biophysical Chemistry

Biointerphases Cover Image

Protein tethered lipid bilayer: An alternative mimic of the biological membrane (Mini Review)

Article metrics

  • 810 Accesses

  • 7 Citations


An overview is given about results obtained so far with an alternative concept of solid-supported tethered lipid bilayers for the functional incorporation of membrane proteins. The incorporated protein itself acts as the tethering molecule resulting in a versatile system where the protein determines the characteristics of submembraneous space. This architecture is achieved through a metal chelating surface, onto which histidine-tagged (his-tagged) membrane proteins are able to bind in a reversible manner. The tethered bilayer membrane is generated by substitution of protein bund detergent molecules with lipids using in situ dialysis or adsorption. Histidine-tagged ctochrome c oxidase is used as a model protein in this study. However, the system should be applicable to all recombinant membrane proteins bearing a terminal his tag. The system is particularly designed, among other surface-analytical techniques, for a combined application of electrochemical and vibrational spectroscopy measurements.


  1. 1

    L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).

  2. 2

    E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).

  3. 3

    J. K. Cullison, F. M. Hawkridge, N. Nakashima, and Sh. Yoshikawa, Langmuir 10, 877 (1994).

  4. 4

    R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M. R. Moncelli, and F. T. Buoninsegni, J. Electroanal. Chem. 504, 1 (2001).

  5. 5

    W. Knoll, K. Morigaki, R. Naumann, B. Sacca, S. Schiller, and E. K. Sinner, in Ultrathin Electrochemical Chemo- and Biosensors, Technology and Performance, edited by V. M. Mirsky (Springer-Verlag, Berlin, 2004), 239.

  6. 6

    M. Tanaka and E. Sackmann, Nature (London) 437, 656 (2005).

  7. 7

    E. Sackmann, Science 271, 43 (1996).

  8. 8

    H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15, 8451 (1999).

  9. 9

    S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem., Int. Ed. 42, 208 (2003).

  10. 10

    F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, Biophys. J. 87, 3213 (2004).

  11. 11

    K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, and J. Heberle, J. Am. Chem. Soc. 126, 16199 (2004).

  12. 12

    M. G. Friedrich, M. A. Plum, M. G. Santonicola, nV. U. Kirste, W. Knoll, B. Ludwig, and R. L. C. Naumann, Biophys. J. (to be published).

  13. 13

    M. G. Friedrich, J. W. F. Robertson, D. Walz, W. Knoll, and R. L. C. Naumann, Biophys. J. (in press).

  14. 14

    M.G. Friedrich, F. Giess, R. Naumann, W. Knoll, K. Ataka, J. Heberle, J. Hrabakova, D. H. Murgida, and P. Hildebrandt, Chem. Commun. (Cambridge) 2004, 2376.

  15. 15

    M. G. Friedrich, V. U. Kirste, J. Zhu, R. B. Gennis, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. B (in press).

  16. 16

    O.-M. H. Richter and B. Ludwig, Rev. Physiol. Biochem. Pharmacol. 147, 47 (2003).

  17. 17

    D. M. Mitchell and R. B. Gennis, FEBS Lett. 368, 148 (1995).

  18. 18

    S. J. Döpner, B. Hudecek, B. Ludwig, H. Witt, and P. Hildebrandt, Biochim. Biophys. Acta 1480, 57 (2000).

  19. 19

    G. E. Heibel, P. Hildebrandt, B. Ludwig, P. Steinrücke, T. Soulimane, and G. Buse, Biochemistry 32, 10866 (1993).

  20. 20

    Unpublished results.

  21. 21

    E. A. Gorbikova, K. Vuorilehto, M. Wikström, and M. I. Verkhovsky, Biochemistry 45, 5641 (2006).

  22. 22

    F. A. Armstrong, J. Chem. Soc. Dalton Trans. 661 (2002).

  23. 23

    L. J. C. Jeuken, J. P. McEvoy, and F. A. Armstrong, J. Phys. Chem. B 106, 2304 (2002).

  24. 24

    E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 101, 19 (1979).

  25. 25

    L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc. 128, 1711 (2006).

  26. 26

    L. J. C. Jeuken, Biochim. Biophys. Acta 1604, 67 (2003).

  27. 27

    J. Hirst, J. L. C. Duff, G. N. L. Jameson, M. A. Kemper, B. K. Burgess, and F. A. Armstrong, J. Am. Chem. Soc. 120, 7085 (1998).

  28. 28

    J. R. Winkler, B. G. Malmström, and H. B. Gray, Biophys. Chem. 54, 199 (1995).

  29. 29

    K. Kobayashi, H. Une, and K. Hayashi, J. Biol. Chem. 264, 7976 (1989).

  30. 30

    T. Nilsson, Proc. Natl. Acad. Sci. U.S.A. 89, 6497 (1992).

  31. 31

    M. Ruitenberg, A. Kannt, E. Bamberg, K. Fendler, and H. Michel, Nature (London) 417, 99 (2002).

  32. 32

    H. Michel, Biochemistry 38, 15129 (1999).

  33. 33

    M. I. Verkhovsky, A. Jasaitis, M. L. Verkhovskaya, J. E. Morgan, and M. Wikström, Nature (London) 400, 480 (1999).

  34. 34

    M. I. Verkhovsky, I. Belevich, D. A. Bloch, and M. Wikström, Biochim. Biophys. Acta 1757, 401 (2006).

  35. 35

    K. Faxen, G. Gilderson, P. Adelroth, and P. Brzezinski, Nature (London) 437, 286 (2005).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article