Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

From diffraction to imaging: New avenues in studying hierarchical biological tissues with x-ray microbeams (Review)

Article metrics

Abstract

Load bearing biological materials such as bone or arthropod cuticle have optimized mechanical properties which are due to their hierarchical structure ranging from the atomic/molecular level up to macroscopic length scales. Structural investigations of such materials require new experimental techniques with position resolution ideally covering several length scales. Beside light and electron microscopy, synchrotron radiation based x-ray imaging techniques offer excellent possibilities in this respect, ranging from full field imaging with absorption or phase contrast to x-ray microbeam scanning techniques. A particularly useful approach for the study of biological tissues is the combination x-ray microbeam scanning with nanostructural information obtained from x-ray scattering [small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS)]. This combination allows constructing quantitative images of nanostructural parameters with micrometer scanning resolution, and hence, covers two length scales at once. The present article reviews recent scanning microbeam SAXS/WAXS work on bone and some other biological tissues with particular emphasis on the imaging capability of the method. The current status of instrumentation and experimental possibilities is also discussed, and a short outlook about actual and desirable future developments in the field is given.

References

  1. 1

    S. Weiner and H. D. Wagner, Annu. Rev. Mater. Sci. 28, 271 (1998).

  2. 2

    P. Fratzl, H. S. Gupta, E. P. Paschalis, and P. Roschger, J. Mater. Chem. 14, 2115 (2004).

  3. 3

    P. Fratzl and R. Weinkamer, Prog. Mater. Sci. 52, 1263 (2007).

  4. 4

    D. Fengel and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions, (de Gruyter, Berlin, 1989).

  5. 5

    P. Fratzl, I. Burgert, and H. S. Gupta, Phys. Chem. Chem. Phys. 6, 5575 (2004).

  6. 6

    A. C. Neville, Biology of the Arthropod Cuticle (Springer, Berlin, 1975).

  7. 7

    J. Vincent and U. Wegst, Arthropod Struct. Dev. 33, 187 (2004).

  8. 8

    R. Roer and R. Dillaman, Am. Zool. 24, 893 (1984).

  9. 9

    P. Fratzl, H. F. Jakob, S. Rinnerthaler, P. Roschger, and K. Klaushofer, J. Appl. Crystallogr. 30, 765 (1997).

  10. 10

    O. Paris, I. Zizak, H. Lichtenegger, P. Roschger, K. Klaushofer, and P. Fratzl, Cell. Mol. Biol. Lett. 46, 993 (2000).

  11. 11

    C. Riekel, Rep. Prog. Phys. 63, 233 (2000).

  12. 12

    C. Riekel, M. Burghammer, and G. Schertler, Curr. Opin. Struct. Biol. 15, 556 (2005).

  13. 13

    C. Riekel and R. J. Davies, Curr. Opin. Colloid Interface Sci. 9, 396 (2005).

  14. 14

    C. Riekel, A. Cedola, F. Heidelbach, and K. Wegner, Macromolecules 30, 1033 (1997).

  15. 15

    C. Riekel, T. Dieing, P. Engstrom, L. Vincze, C. Martin, and A. Mahendrasingam, Macromolecules 32, 7859 (1999).

  16. 16

    C. Riekel, M. Muller, and F. Vollrath, Macromolecules 32, 4464 (1999).

  17. 17

    C. Riekel, M. C. G. Gutierrez, A. Gourrier, and S. Roth, Anal. Bioanal. Chem. 376, 594 (2003).

  18. 18

    M. Grosse, J. Boehmer, and C. Riekel, J. Mater. Sci. Lett. 17, 1631 (1998).

  19. 19

    D. Loidl, H. Peterlik, O. Paris, M. Müller, M. Burghammer, and C. Riekel, J. Synchrotron Radiat. 12, 758 (2005).

  20. 20

    A. Mahendrasingam et al., J. Synchrotron Radiat. 2, 308 (1995).

  21. 21

    M. Muller, C. Riekel, R. Vuong, and H. Chanzy, Polymer 41, 2627 2000.

  22. 22

    R. J. Davies, M. A. Montes-Moran, C. Riekel, and R. J. Young, J. Mater. Sci. 36, 3079 (2001).

  23. 23

    A. Bram, C. I. Branden, C. Craig, I. Snigireva, and C. Riekel, J. Appl. Crystallogr. 30, 390 (1997).

  24. 24

    T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, Macromolecules 30, 3813 (1997).

  25. 25

    H. Lichtenegger, M. Muller, O. Paris, C. Riekel, and P. Fratzl, J. Appl. Crystallogr. 32, 1127 (1999).

  26. 26

    F. Baltenneck, B. A. Bernard, J. C. Garson, P. Engstrom, C. Riekel, F. Leroy, A. Franbourg, and J. Doucet, Cell. Mol. Biol. Lett. 46, 1017 (2000).

  27. 27

    A. Bigi, M. Burghammer, R. Falconi, M. H. J. Koch, S. Panzavolta, and C. Riekel, J. Struct. Biol. 136, 137 (2001).

  28. 28

    J. Schoeck, R. J. Davies, A. Martel, and C. Riekel, Biomacromolecules 8, 602 (2007).

  29. 29

    M. Peura, M. Muller, U. Vainio, M. P. Saren, P. Saranpaa, and R. Serimaa, Trees-Structure and Function 22, 49 (2008).

  30. 30

    O. Paris, C. Li, S. Siegel, G. Weseloh, F. Emmerling, H. Riesemeier, A. Erko, and P. Fratzl, J. Appl. Crystallogr. 40, s466 (2007).

  31. 31

    R. J. Davies, J. Appl. Crystallogr. 39, 262 (2006).

  32. 32

    R. J. Davies, J. Appl. Crystallogr. 39, 267 (2006).

  33. 33

    R. Seidel, A. Gourrier, M. Burghammer, C. Riekel, G. Jeronimidis, and O. Paris, Micron 39, 198 (2008).

  34. 34

    A. Gourrier et al., J. Appl. Crystallogr. 40, s78 2007; http://journals.iucr.org/

  35. 35

    I. Zizak, O. Paris, P. Roschger, S. Bernstorff, H. Amenitsch, K. Klaushofer, and P. Fratzl, J. Appl. Crystallogr. 33, 820 (2000).

  36. 36

    Y. Nozue, R. Kurita, S. Hirano, N. Kawasaki, S. Ueno, A. Iida, T. Nishi, and Y. Amemiya, Polymer 44, 6397 (2003).

  37. 37

    F. Pfeiffer, C. David, M. Burghammer, C. Riekel, and T. Salditt, Science 297, 230 (2002).

  38. 38

    O. Hignette, P. Cloetens, W. K. Lee, W. Ludwig, and G. Rostaing, J. Phys. IV 104, 231 (2003).

  39. 39

    C. G. Schroer et al., Appl. Phys. Lett. 87, 164102 (2005).

  40. 40

    C. Riekel, M. Burghammer, and M. Muller, J. Appl. Crystallogr. 33, 421 (2000).

  41. 41

    R. J. Davies, C. Koenig, M. Burghammer, and C. Riekel, Appl. Phys. Lett. 92, 101903 (2008).

  42. 42

    M. Ruggeberg, T. Speck, O. Paris, C. Lapierre, G. Koch, and I. Burgert, Proc. R. Soc. London, Ser. B (to be published).

  43. 43

    S. Orso, U. G. K. Wegst, C. Eberl, and E. Arzt, Adv. Mater. (Weinheim, Ger.) 18, 874 (2006).

  44. 44

    E. Takacs, L. Wojnarovits, J. Borsa, C. Foldvary, P. Hargittai, and O. Zold, Radiat. Phys. Chem. 55, 663 (1999).

  45. 45

    A. Gemperle, Z. Holan, and V. Pokorny, Biopolymers 21, 1 (1982).

  46. 46

    O. Paris (unpublished).

  47. 47

    R. Henderson, Proc. R. Soc. London, Ser. B 241, 6 (1990).

  48. 48

    H. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke, and P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 103, 17741 (2006).

  49. 49

    R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. Purslow, and P. Fratzl, Philos. Trans. R. Soc. London, Ser. B 357, 191 (2002).

  50. 50

    C. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006).

  51. 51

    C. R. Wilke and P. Chang, AIChE J. 1, 264 (1955).

  52. 52

    C. Nave and M. A. Hill, J. Synchrotron Radiat. 12, 299 (2005).

  53. 53

    P. Fratzl, N. Fratzl-Zelman, K. Klaushofer, G. Vogl, and K. Koller, Calcif. Tissue Int. 48, 407 (1991).

  54. 54

    P. Fratzl, M. Groschner, G. Vogl, H. Plenk, J. Eschberger, N. Fratzlzelman, K. Koller, and K. Klaushofer, J. Bone Miner. Res. 7, 329 1992.

  55. 55

    P. Fratzl, P. Roschger, J. Eschberger, B. Abendroth, and K. Klaushofer, J. Bone Miner. Res. 9, 1541 (1994).

  56. 56

    P. Fratzl, O. Paris, K. Klaushofer, and W. J. Landis, J. Clin. Invest. 97, 396 (1996).

  57. 57

    P. Fratzl, S. Schreiber, and K. Klaushofer, Connect. Tissue Res. 35, 9 (1996).

  58. 58

    S. Rinnerthaler, P. Roschger, H. F. Jakob, A. Nader, K. Klaushofer, and P. Fratzl, Calcif. Tissue Int. 64, 422 (1999).

  59. 59

    P. Fratzl, H. S. Gupta, O. Paris, A. Valenta, P. Roschger, and K. Klaushofer, Prog. Colloid Polym. Sci. 130, 33 (2005).

  60. 60

    P. Fratzl, J. Stat. Phys. 77, 125 (1994).

  61. 61

    P. Roschger, B. M. Grabner, S. Rinnerthaler, W. Tesch, M. Kneissel, A. Berzlanovich, K. Klaushofer, and P. Fratzl, J. Struct. Biol. 136, 126 (2001).

  62. 62

    M. Hauge Bunger et al., Bone N.Y. 39, 530 (2006).

  63. 63

    N. P. Camacho, S. Rinnerthaler, E. P. Paschalis, R. Mendelsohn, A. L. Boskey, and P. Fratzl, Bone N.Y. 25, 287 (1999).

  64. 64

    I. Zizak et al., J. Struct. Biol. 141, 208 (2003).

  65. 65

    H. S. Gupta, P. Roschger, I. Zizak, N. Fratzl-Zelman, A. Nader, K. Klaushofer, and P. Fratzl, Calcif. Tissue Int. 72, 567 (2003).

  66. 66

    D. Lammie, M. M. Bain, and T. J. Wess, J. Synchrotron Radiat. 12, 721 (2005).

  67. 67

    E. Zolotoyabko and B. Pokroy, Cryst. Eng. Commun. 9, 1156 (2007).

  68. 68

    J. C. Hiller and T. J. Wess, J. Archaeol. Sci. 33, 560 (2006).

  69. 69

    M. H. Bunger et al., Eur. Cells Mater 12, 81 (2006).

  70. 70

    A. Cedola et al., Spectrochim. Acta, Part B 62, 642 (2007).

  71. 71

    W. Tesch, N. Eidelman, P. Roschger, F. Goldenberg, K. Klaushofer, and P. Fratzl, Calcif. Tissue Int. 69, 147 (2001).

  72. 72

    H. C. Lichtenegger, T. Schoberl, M. H. Bartl, H. Waite, and G. D. Stucky, Science 298, 389 (2002).

  73. 73

    H. C. Lichtenegger, T. Schoberl, J. T. Ruokolainen, J. O. Cross, S. M. Heald, H. Birkedal, J. H. Waite, and G. D. Stucky, Proc. Natl. Acad. Sci. U.S.A. 100, 9144 (2003).

  74. 74

    M. Muller, C. Czihak, G. Vogl, P. Fratzl, H. Schober, and C. Riekel, Macromolecules 31, 3953 (1998).

  75. 75

    Y. Kajiura, S. Watanabe, T. Itou, A. Iida, Y. Shinohara, and Y. Amemiya, J. Appl. Crystallogr. 38, 420 (2005).

  76. 76

    Y. Kajiura et al., J. Struct. Biol. 155, 438 (2006).

  77. 77

    H. Bunge, Texture Analysis in Materials Science (Butterworths, London, 1982).

  78. 78

    H. R. Wenk and P. Van Houtte, Rep. Prog. Phys. 67, 1367 (2004).

  79. 79

    O. Paris and M. Muller, Nucl. Instrum. Methods Phys. Res. B 200, 390 (2003).

  80. 80

    H. F. Jakob, P. Fratzl, and S. E. Tschegg, J. Struct. Biol. 113, 13 (1994).

  81. 81

    H. Lichtenegger, A. Reiterer, S. E. Stanzl-Tschegg, and P. Fratzl, J. Struct. Biol. 128, 257 (1999).

  82. 82

    J. Farber, H. C. Lichtenegger, A. Reiterer, S. Stanzl-Tschegg, and P. Fratzl, J. Mater. Sci. 36, 5087 (2001).

  83. 83

    A. Reiterer, H. Lichtenegger, S. Tschegg, and P. Fratzl, Philos. Mag. A 79, 2173 (1999).

  84. 84

    A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge University Press, Cambridge, 1993).

  85. 85

    M. M. Giraud-Guille, Curr. Opin. Solid State Mater. Sci. 3, 221 (1998).

  86. 86

    T. A. Keil, Microsc. Res. Tech. 39, 506 (1997).

  87. 87

    J. S. Edwards and J. Palka, Proc. R. Soc. London, Ser. B 185, 83 (1974).

  88. 88

    A. Skordos, P. H. Chan, J. F. V. Vincent, and G. Jeronimidis, Philos. Trans. R. Soc. London, Ser. A 360, 239 (2002).

  89. 89

    S. Weiner, W. Traub, and H. D. Wagner, J. Struct. Biol. 126, 241 (1999).

  90. 90

    W. J. Landis, K. J. Hodgens, J. Arena, M. J. Song, and B. F. McEwen, Microsc. Res. Tech. 33, 192 (1996).

  91. 91

    F. Heidelbach, C. Riekel, and H. R. Wenk, J. Appl. Crystallogr. 32, 841 (1999).

  92. 92

    H. R. Wenk and F. Heidelbach, Bone N.Y. 24, 361 (1999).

  93. 93

    A. Ascenzi, A. Benvenuti, A. Bigi, E. Foresti, M. H. J. Koch, F. Mango, A. Ripamonti, and N. Roveri, Calcif. Tissue Int. 62, 266 (1998).

  94. 94

    N. Sasaki and Y. Sudoh, Calcif. Tissue Int. 60, 361 (1997).

  95. 95

    G. E. Bacon, P. J. Bacon, and R. K. Griffiths, J. Appl. Crystallogr. 10, 124 (1977).

  96. 96

    D. Jaschouz, O. Paris, P. Roschger, H. S. Hwang, and P. Fratzl, J. Appl. Crystallogr. 36, 494 2003; http://journals.iucr.org/

  97. 97

    W. Wagermaier, H. S. Gupta, A. Gourrier, M. Burghammer, P. Roschger, and P. Fratzl, BioInterphases 1, 1 (2006).

  98. 98

    W. Wagermaier, H. S. Gupta, A. Gourrier, O. Paris, P. Roschger, M. Burghammer, and R. C. P. Fratzl, J. Appl. Crystallogr. 40, 115 (2007); http://journals.iucr.org/

  99. 99

    H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974).

  100. 100

    R. J. Davies, M. Burghammer, and C. Riekel, Appl. Phys. Lett. 87, 24105 (2005).

  101. 101

    R. J. Davies, M. Burghammer, and C. Riekel, Macromolecules 39, 4834 (2006).

  102. 102

    D. Loidl, O. Paris, M. Burghammer, C. Riekel, and H. Peterlik, Phys. Rev. Lett. 95, 225501 (2005).

  103. 103

    C. Lorenz-Haas, P. Muller-Buschbaum, O. Wunnicke, C. Cassignol, M. Burghammer, C. Riekel, and M. Stamm, Langmuir 19, 3056 (2003).

  104. 104

    H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, Nat. Mater. 5, 52 (2006).

  105. 105

    R. Elbaum, L. Zaltzman, I. Burgert, and P. Fratzl, Science 316, 884 (2007).

  106. 106

    D. Cojoc et al., Appl. Phys. Lett. 91, 234107 (2007).

  107. 107

    H. F. Poulsen et al., J. Appl. Crystallogr. 34, 751 (2001).

  108. 108

    B. C. Larson, W. Yang, G. E. Ice, J. D. Budai, and J. Z. Tischler, Nature London 415, 887 (2002).

  109. 109

    E. Zolotoyabko and J. P. Quintana, Rev. Sci. Instrum. 73, 1663 (2002).

  110. 110

    B. Pokroy and E. Zolotoyabko, J. Mater. Chem. 13, 682 (2003).

  111. 111

    C. G. Schroer, M. Kuhlmann, S. V. Roth, R. Gehrke, N. Stribeck, A. Almendarez-Camarillo, and B. Lengeler, Appl. Phys. Lett. 88, 164102 (2006).

  112. 112

    S. R. Stock, F. de Carlo, and J. D. Almer, J. Struct. Biol. 161, 144 (2008).

  113. 113

    J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature (London) 400, 342 (1999).

  114. 114

    M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, Nature (London) 442, 63 (2006).

  115. 115

    H. Jiang et al., Phys. Rev. Lett. 100, 038103 (2008).

  116. 116

    D. Shapiro et al., Proc. Natl. Acad. Sci. U.S.A. 102, 15343 (2005).

  117. 117

    H. M. L. Faulkner and J. M. Rodenburg, Phys. Rev. Lett. 93, 023903 (2004).

  118. 118

    J. M. Rodenburg and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795 (2004).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article