Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Molecular simulation of protein-surface interactions: Benefits, problems, solutions, and future directions (Review)

Article metrics

Abstract

While the importance of protein adsorption to materials surfaces is widely recognized, little is understood at this time regarding how to design surfaces to control protein adsorption behavior. All-atom empirical force field molecular simulation methods have enormous potential to address this problem by providing an approach to directly investigate the adsorption behavior of peptides and proteins at the atomic level. As with any type of technology, however, these methods must be appropriately developed and applied if they are to provide realistic and useful results. Three issues that are particularly important for the accurate simulation of protein adsorption behavior are the selection of a valid force field to represent the atomic-level interactions involved, the accurate representation of solvation effects, and system sampling. In this article, each of these areas is addressed and future directions for continued development are presented.

References

  1. 1

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

  2. 2

    V. Hlady and J. Buijs, Curr. Opin. Biotechnol. 7, 72 (1996).

  3. 3

    W. B. Tsai, J. M. Grunkemeier, C. D. McFarland, and T. A. Horbett, J. Biomed. Mater. Res. 60, 348 (2002).

  4. 4

    R. A. Latour, The Encyclopedia of Biomaterials and Bioengineering (Taylor & Francis, New York, 2005), pp. 1–15.

  5. 5

    K. C. Dee, D. A. Puleo, and R. Bizios, Tissue-Biomaterials Interactions (Wiley, Hoboken, NJ, 2002), pp. 45–49.

  6. 6

    S. J. Geelhood, T. A. Horbett, W. K. Ward, M. D. Wood, and M. J. Quinn, J. Biomed. Mater. Res., Part B: Appl. Biomater. 81B, 251 (2007).

  7. 7

    K. Lange, S. Grimm, and M. Rapp, Sens. Actuators B 125, 441 (2007).

  8. 8

    M. E. Aubin-Tam, H. Zhou, and K. Hamad-Schifferli, Soft Mater. 4, 554 (2008).

  9. 9

    J. B. Hall, M. A. Dobrovolskaia, A. K. Patri, and S. E. McNeil, Nanomedicine 2, 789 (2007).

  10. 10

    C. W. Hung, T. R. P. Holoman, P. Kofinas, and W. E. Bentley, Biochem. Eng. J. 38, 164 (2008).

  11. 11

    I. Lynch and K. A. Dawson, Nanotoday 3, 40 (2008).

  12. 12

    Q. X. Mu et al., J. Phys. Chem. C 112, 3300 (2008).

  13. 13

    M. Hartmann, Chem. Mater. 17, 4577 (2005).

  14. 14

    C. Shüler and F. Carusa, Macromol. Rapid Commun. 21, 750 (2000).

  15. 15

    H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, and X. R. Wang, Anal. Chem. 76, 1316 (2004).

  16. 16

    A. M. Yu, Z. J. Liang, and F. Caruso, Chem. Mater. 17, 171 (2005).

  17. 17

    W. Kusnezow and J. D. Hoheisel, BioTechniques Suppl. S, 14 (2002(

  18. 18

    C. Steinhauer, C. Wingren, A. C. Hager, and C. A. Borrebaeck, BioTechniques Suppl. S, 38 (2002).

  19. 19

    D. R. M. Shankaran and N. Miura, J. Phys. D 40, 7187 (2007).

  20. 20

    M. Salmain, N. Fischer-Durand, and C. M. Pradier, Anal. Biochem. 373, 61 (2008).

  21. 21

    S. Sanchez, M. Pumera, and E. Fabregas, Biosens. Bioelectron. 23, 332 (2007).

  22. 22

    H. X. Wang, S. Meng, K. Guo, Y. Liu, P. Y. Yang, W. Zhong, and B. H. Liu, Electrochem. Commun. 10, 447 (2008).

  23. 23

    Y. Goto, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, Biomacromolecules 9, 828 (2008).

  24. 24

    D. A. C. Beck and V. Daggett, Methods 34, 112 (2004).

  25. 25

    C. L. Brooks III, Curr. Opin. Struct. Biol. 8, 222 (1998).

  26. 26

    P. Ferrara, J. Apostolakis, and A. Caflisch, J. Phys. Chem. B 104, 5000 (2000).

  27. 27

    A. R. Fersht and V. Daggett, Cell 108, 573 (2002).

  28. 28

    S. Gnanakaran, H. Nymeyer, J. Portman, K. Y. Sanbonmatsu, and A. E. Garcia, Curr. Opin. Struct. Biol. 13, 168 (2003).

  29. 29

    S. Hofinger, B. Almeida, and U. H. E. Hansmann, Proteins 68, 662 (2007).

  30. 30

    S. M. Jang, E. Kim, and Y. S. Pak, J. Chem. Phys. 128, 105102 (2008).

  31. 31

    R. D. Schaeffer, A. Fersht, and V. Daggett, Curr. Opin. Struct. Biol. 18, 4 (2008).

  32. 32

    W. Wang, O. Donini, C. M. Reyes, and P. A. Kollman, Annu. Rev. Biophys. Biomol. Struct. 30, 211 (2001).

  33. 33

    I. Halperin, B. Y. Ma, H. Wolfson, and R. Nussinov, Proteins 47, 409 (2002).

  34. 34

    L. P. Ehrlich, M. Nilges, and R. C. Wade, Proteins 58, 126 (2005).

  35. 35

    V. De Grandis, A. R. Bizzarri, and S. Cannistraro, J. Mol. Recognit. 20, 215 (2007).

  36. 36

    S. Costantini, G. Colonna, and A. M. Facchiano, Comput. Biol. Chem. 31, 196 (2007).

  37. 37

    V. Chandrasekaran, J. Ambati, B. K. Ambati, and E. W. Taylor, J. Mol. Graphics Modell. 26, 775 (2007).

  38. 38

    P. J. Bond and M. S. P. Sansom, J. Am. Chem. Soc. 128, 2697 (2006).

  39. 39

    R. G. Efremov, D. E. Nolde, G. Vergoten, and A. S. Arseniev, Biophys. J. 76, 2460 (1999).

  40. 40

    M. T. Hyvonen, K. Oorni, P. T. Kovanen, and M. Ala-Korpela, Biophys. J. 80, 565 (2001).

  41. 41

    I. Muegge, Med. Res. Rev. 23, 302 (2003).

  42. 42

    D. Bernard, A. Coop, and A. D. Mackerell, J. Med. Chem. 48, 7773 (2005).

  43. 43

    H. F. Chen, Chem. Biol. Drug Des. 71, 434 (2008).

  44. 44

    B. Fischer, K. Fukuzawa, and W. Wenzel, Proteins 70, 1264 (2008).

  45. 45

    B. Waszkowycz, Drug Discovery Today 13, 219 (2008).

  46. 46

    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education, Harlow, UK, 1996), pp. 131–206.

  47. 47

    D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).

  48. 48

    B. Ni, K. H. Lee, and S. B. Sinnott, J. Phys.: Condens. Matter 16, 7261 (2004).

  49. 49

    A. Liu and S. J. Stuart, J. Comput. Chem. 29, 601 (2008).

  50. 50

    S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, J. S. Profeta, and P. Weiner, J. Am. Chem. Soc. 106, 765 (1984).

  51. 51

    W. D. Cornell et al., J. Am. Chem. Soc. 117, 5179 (1995).

  52. 52

    52 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem. 4, 187 (1983).

  53. 53

    A. D. J. MacKerell, B. Brooks, C. L. I. Brooks, L. Nilsson, B. Roux, Y. Won, and M. Karplus, Encyclopedia of Computational Chemistry (Wiley, New York, 1998), pp. 271–277.

  54. 54

    W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).

  55. 55

    G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem. B 105, 6474 (2001).

  56. 56

    W. F. van Gunsteren, X. Daura, and A. E. Mark, Encyclopedia of Compuational Chemistry, (Wiley, New York, 1998) Vol. 2, pp. 1211–1216.

  57. 57

    W. R. P. Scott et al., J. Phys. Chem. A 103, 3596 (1999).

  58. 58

    N. L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977).

  59. 59

    N. L. Allinger, Y. H. Yuh, and J. H. Lii, J. Am. Chem. Soc. 111, 8551 (1989).

  60. 60

    N. L. Allinger, K. Chen, and L. H. Lii, J. Comput. Chem. 17, 642 (1996).

  61. 61

    M. J. Hwang, T. P. Stockfisch, and A. T. Hagler, J. Am. Chem. Soc. 116, 2515 (1994).

  62. 62

    A. Soldera, Polymer 43, 4269 (2002).

  63. 63

    J. Blomqvist, Polymer 42, 3515 (2001).

  64. 64

    S. Lee, H. Y. Jeong, and H. Lee, Comput. Theor. Polym. Sci. 11, 219 (2001).

  65. 65

    S. W. Bunte and H. Sun, J. Phys. Chem. B 104, 2477 (2000).

  66. 66

    M. J. McQuaid, H. Sun, and D. Rigby, J. Comput. Chem. 25, 61 (2004).

  67. 67

    H. Sun, J. Phys. Chem. B 102, 7338 (1998).

  68. 68

    A. D. MacKerell, J. Comput. Chem. 25, 1584 (2004).

  69. 69

    D. Yin and A. D. MacKerell, Jr., J. Comput. Chem. 19, 334 (1998).

  70. 70

    S. W. Rick and S. J. Stuart, Reviews in Computational Chemistry (Wiley, New York, 2002), pp. 89–146.

  71. 71

    D. P. Geerke and W. F. van Gunsteren, Mol. Phys. 105, 1861 (2007).

  72. 72

    F. Paesani, S. Iuchi, and G. A. Voth, J. Chem. Phys. 127, 074506 (2007).

  73. 73

    A. Warshel, M. Kato, and A. V. Pisliakov, J. Chem. Theory Comput. 3, 2034 (2007).

  74. 74

    G. A. Kaminski, H. A. Stern, B. J. Berne, R. A. Friesner, Y. X. X. Cao, R. B. Murphy, R. H. Zhou, and T. A. Halgren, J. Comput. Chem. 23, 1515 (2002).

  75. 75

    C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, J. Comput. Chem. 25, 1656 (2004).

  76. 76

    V. P. Raut, M. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

  77. 77

    V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 22, 2402 (2006).

  78. 78

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

  79. 79

    V. N. Vernekar and R. A. Latour, Mater. Res. Innovations 9, 337 (2005).

  80. 80

    Y. Wei and R. A. Latour, Langmuir 24, 6721 (2008).

  81. 81

    F. Wang, S. J. Stuart, and R. A. Latour, BioInterphases 3, 9 (2008).

  82. 82

    A. Glattli, X. Daura, and W. F. van Gunsteren, J. Chem. Phys. 116, 9811 (2002).

  83. 83

    P. Mark and L. Nilsson, J. Phys. Chem. A 105, 9954 (2001).

  84. 84

    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

  85. 85

    W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985).

  86. 86

    W. L. Jorgensen and C. Jenson, J. Comput. Chem. 19, 1179 (1998).

  87. 87

    H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004).

  88. 88

    H. W. Horn, W. C. Swope, and J. W. Pitera, J. Chem. Phys. 123, 194504 (2005).

  89. 89

    M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 114, 363 (2001).

  90. 90

    S. W. Rick, S. J. Stuart, J. S. Bader, and B. J. Berne, J. Mol. Liq. 65-66, 31 (1995).

  91. 91

    R. Garemyr and A. Elofsson, Proteins 37, 417 (1999).

  92. 92

    CRC Handbook of Chemistry and Physic, 67th ed. (CRC, Boca Rotan, FL, 1986–1987), p. E-56.

  93. 93

    J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, CA, 1992), p. 41.

  94. 94

    M. Schaefer, C. Bartels, and M. Karplus, Theor. Chem. Acc. 101, 194 (1999).

  95. 95

    K. A. Sharp and B. Honig, J. Phys. Chem. 94, 7684 (1990).

  96. 96

    C. Bertonati, B. Honig, and E. Alexov, Biophys. J. 92, 1891 (2007).

  97. 97

    W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990).

  98. 98

    B. N. Dominy and C. L. Brooks III, J. Phys. Chem. B 103, 3765 (1999).

  99. 99

    D. Bashford and D. A. Case, Annu. Rev. Phys. Chem. 51, 129 (2000).

  100. 100

    M. Feig and C. L. Brooks III, Curr. Opin. Struct. Biol. 14, 217 (2004).

  101. 101

    M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, and C. L. Brooks, J. Comput. Chem. 25, 265 (2004).

  102. 102

    R. Zhou and B. J. Berne, Proc. Natl. Acad. Sci. U.S.A. 99, 12777 (2002).

  103. 103

    D. Sitkoff, K. A. Sharp, and B. Honig, J. Phys. Chem. 98, 1978 (1994).

  104. 104

    D. Qiu, P. S. Shenkin, F. P. Hollinger, and W. C. Still, J. Phys. Chem. A 101, 3005 (1997).

  105. 105

    Y. Sun and R. A. Latour, J. Comput. Chem. 27, 1908 (2006).

  106. 106

    Y. Sun, B. N. Dominy, and R. A. Latour, J. Comput. Chem. 28, 1883 (2007).

  107. 107

    D. A. McQuarrie, Statistical Thermodynamics (University Science Books, Mill Valley, CA, 1973), pp. 35–47.

  108. 108

    S. C. Harvey and M. Prabhakaran, J. Phys. Chem. 91, 4799 (1987).

  109. 109

    B. Roux, Comput. Phys. Commun. 91, 275 (1995).

  110. 110

    M. Mezei, J. Comput. Phys. 68, 237 (1987).

  111. 111

    C. Bartels and M. Karplus, J. Phys. Chem. B 102, 865 (1998).

  112. 112

    C. Bartels and M. Karplus, J. Comput. Chem. 18, 1450 (1997).

  113. 113

    T. C. Beutler and W. F. Vangunsteren, J. Chem. Phys. 100, 1492 (1994).

  114. 114

    S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).

  115. 115

    S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. Chem. 16, 1339 (1995).

  116. 116

    E. Gallicchio, M. Andrec, A. K. Felts, and R. M. Levy, J. Phys. Chem. B 109, 6722 (2005).

  117. 117

    Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).

  118. 118

    A. E. Garcia and K. Y. Sanbonmatsu, Proteins 42, 345 (2001).

  119. 119

    U. H. E. Hansmann, Chem. Phys. Lett. 281, 140 (1997).

  120. 120

    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education, Harlow, UK, 1996), pp. 407–408.

  121. 121

    A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001).

  122. 122

    Y. Okamoto, J. Mol. Graphics Modell. 22, 425 (2004).

  123. 123

    A. Okur, L. Wickstrom, M. Layten, R. Geney, K. Song, V. Hornak, and C. Simmerling, J. Chem. Theory Comput. 2, 420 (2006).

  124. 124

    A. Okur, D. R. Roe, G. L. Cui, V. Hornak, and C. Simmerling, J. Chem. Theory Comput. 3, 557 (2007).

  125. 125

    X. F. Li, C. P. O’Brien, G. Collier, N. A. Vellore, F. Wang, R. A. Latour, D. A. Bruce, and S. J. Stuart, J. Chem. Phys. 127, 164116 (2007).

  126. 126

    H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. Phys. 116, 9058 (2002).

  127. 127

    R. Affentranger, I. Tavernelli, and E. E. Di Iorio, J. Chem. Theory Comput. 2, 217 (2006).

  128. 128

    V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

  129. 129

    J. Ludwig and D. G. Vlachos, J. Chem. Phys. 127, 154716 (2007).

  130. 130

    F. Ramondo, L. Bencivenni, R. Caminiti, A. Pieretti, and L. Gontrani, Phys. Chem. Chem. Phys. 9, 2206 (2007).

  131. 131

    J. L. Li, R. Car, C. Tang, and N. S. Wingreen, Proc. Natl. Acad. Sci. U.S.A. T104, 2626 (2007).

  132. 132

    A. Matsuura, H. Sato, H. Houjou, S. Saito, T. Hayashi, and M. Sakurai, J. Comput. Chem. 27, 1623 (2006).

  133. 133

    J. Berges, G. Rickards, A. Rauk, and C. Houee-Levin, Chem. Phys. Lett. 421, 63 (2006).

  134. 134

    D. Riccardi, P. Schaefer, and Q. Cui, J. Phys. Chem. B 109, 17715 (2005).

  135. 135

    J. W. Chu, S. Izveko, and G. A. Voth, Mol. Simul. 32, 211 (2006).

  136. 136

    J. J. de Pablo and W. A. Curtin, MRS Bull. 32, 905 (2007).

  137. 137

    J. Zhou, I. F. Thorpe, S. Izvekov, and G. A. Voth, Biophys. J. 92, 4289 (2007).

  138. 138

    H. J. C. Berendsen, D. Vanderspoel, and R. Vandrunen, Comput. Phys. Commun. 91, 43 (1995).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article