Skip to main content

Journal for Biophysical Chemistry

Molecular simulation of protein-surface interactions: Benefits, problems, solutions, and future directions (Review)

Abstract

While the importance of protein adsorption to materials surfaces is widely recognized, little is understood at this time regarding how to design surfaces to control protein adsorption behavior. All-atom empirical force field molecular simulation methods have enormous potential to address this problem by providing an approach to directly investigate the adsorption behavior of peptides and proteins at the atomic level. As with any type of technology, however, these methods must be appropriately developed and applied if they are to provide realistic and useful results. Three issues that are particularly important for the accurate simulation of protein adsorption behavior are the selection of a valid force field to represent the atomic-level interactions involved, the accurate representation of solvation effects, and system sampling. In this article, each of these areas is addressed and future directions for continued development are presented.

References

  1. 1

    D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).

    CAS  Google Scholar 

  2. 2

    V. Hlady and J. Buijs, Curr. Opin. Biotechnol. 7, 72 (1996).

    CAS  Google Scholar 

  3. 3

    W. B. Tsai, J. M. Grunkemeier, C. D. McFarland, and T. A. Horbett, J. Biomed. Mater. Res. 60, 348 (2002).

    CAS  Google Scholar 

  4. 4

    R. A. Latour, The Encyclopedia of Biomaterials and Bioengineering (Taylor & Francis, New York, 2005), pp. 1–15.

    Google Scholar 

  5. 5

    K. C. Dee, D. A. Puleo, and R. Bizios, Tissue-Biomaterials Interactions (Wiley, Hoboken, NJ, 2002), pp. 45–49.

    Google Scholar 

  6. 6

    S. J. Geelhood, T. A. Horbett, W. K. Ward, M. D. Wood, and M. J. Quinn, J. Biomed. Mater. Res., Part B: Appl. Biomater. 81B, 251 (2007).

    CAS  Google Scholar 

  7. 7

    K. Lange, S. Grimm, and M. Rapp, Sens. Actuators B 125, 441 (2007).

    Google Scholar 

  8. 8

    M. E. Aubin-Tam, H. Zhou, and K. Hamad-Schifferli, Soft Mater. 4, 554 (2008).

    CAS  Google Scholar 

  9. 9

    J. B. Hall, M. A. Dobrovolskaia, A. K. Patri, and S. E. McNeil, Nanomedicine 2, 789 (2007).

    CAS  Google Scholar 

  10. 10

    C. W. Hung, T. R. P. Holoman, P. Kofinas, and W. E. Bentley, Biochem. Eng. J. 38, 164 (2008).

    CAS  Google Scholar 

  11. 11

    I. Lynch and K. A. Dawson, Nanotoday 3, 40 (2008).

    CAS  Google Scholar 

  12. 12

    Q. X. Mu et al., J. Phys. Chem. C 112, 3300 (2008).

    CAS  Google Scholar 

  13. 13

    M. Hartmann, Chem. Mater. 17, 4577 (2005).

    CAS  Google Scholar 

  14. 14

    C. Shüler and F. Carusa, Macromol. Rapid Commun. 21, 750 (2000).

    Google Scholar 

  15. 15

    H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, and X. R. Wang, Anal. Chem. 76, 1316 (2004).

    CAS  Google Scholar 

  16. 16

    A. M. Yu, Z. J. Liang, and F. Caruso, Chem. Mater. 17, 171 (2005).

    CAS  Google Scholar 

  17. 17

    W. Kusnezow and J. D. Hoheisel, BioTechniques Suppl. S, 14 (2002(

  18. 18

    C. Steinhauer, C. Wingren, A. C. Hager, and C. A. Borrebaeck, BioTechniques Suppl. S, 38 (2002).

  19. 19

    D. R. M. Shankaran and N. Miura, J. Phys. D 40, 7187 (2007).

    CAS  Google Scholar 

  20. 20

    M. Salmain, N. Fischer-Durand, and C. M. Pradier, Anal. Biochem. 373, 61 (2008).

    CAS  Google Scholar 

  21. 21

    S. Sanchez, M. Pumera, and E. Fabregas, Biosens. Bioelectron. 23, 332 (2007).

    Google Scholar 

  22. 22

    H. X. Wang, S. Meng, K. Guo, Y. Liu, P. Y. Yang, W. Zhong, and B. H. Liu, Electrochem. Commun. 10, 447 (2008).

    CAS  Google Scholar 

  23. 23

    Y. Goto, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, Biomacromolecules 9, 828 (2008).

    CAS  Google Scholar 

  24. 24

    D. A. C. Beck and V. Daggett, Methods 34, 112 (2004).

    CAS  Google Scholar 

  25. 25

    C. L. Brooks III, Curr. Opin. Struct. Biol. 8, 222 (1998).

    Google Scholar 

  26. 26

    P. Ferrara, J. Apostolakis, and A. Caflisch, J. Phys. Chem. B 104, 5000 (2000).

    CAS  Google Scholar 

  27. 27

    A. R. Fersht and V. Daggett, Cell 108, 573 (2002).

    CAS  Google Scholar 

  28. 28

    S. Gnanakaran, H. Nymeyer, J. Portman, K. Y. Sanbonmatsu, and A. E. Garcia, Curr. Opin. Struct. Biol. 13, 168 (2003).

    CAS  Google Scholar 

  29. 29

    S. Hofinger, B. Almeida, and U. H. E. Hansmann, Proteins 68, 662 (2007).

    CAS  Google Scholar 

  30. 30

    S. M. Jang, E. Kim, and Y. S. Pak, J. Chem. Phys. 128, 105102 (2008).

    Google Scholar 

  31. 31

    R. D. Schaeffer, A. Fersht, and V. Daggett, Curr. Opin. Struct. Biol. 18, 4 (2008).

    CAS  Google Scholar 

  32. 32

    W. Wang, O. Donini, C. M. Reyes, and P. A. Kollman, Annu. Rev. Biophys. Biomol. Struct. 30, 211 (2001).

    CAS  Google Scholar 

  33. 33

    I. Halperin, B. Y. Ma, H. Wolfson, and R. Nussinov, Proteins 47, 409 (2002).

    CAS  Google Scholar 

  34. 34

    L. P. Ehrlich, M. Nilges, and R. C. Wade, Proteins 58, 126 (2005).

    CAS  Google Scholar 

  35. 35

    V. De Grandis, A. R. Bizzarri, and S. Cannistraro, J. Mol. Recognit. 20, 215 (2007).

    Google Scholar 

  36. 36

    S. Costantini, G. Colonna, and A. M. Facchiano, Comput. Biol. Chem. 31, 196 (2007).

    CAS  Google Scholar 

  37. 37

    V. Chandrasekaran, J. Ambati, B. K. Ambati, and E. W. Taylor, J. Mol. Graphics Modell. 26, 775 (2007).

    CAS  Google Scholar 

  38. 38

    P. J. Bond and M. S. P. Sansom, J. Am. Chem. Soc. 128, 2697 (2006).

    CAS  Google Scholar 

  39. 39

    R. G. Efremov, D. E. Nolde, G. Vergoten, and A. S. Arseniev, Biophys. J. 76, 2460 (1999).

    CAS  Google Scholar 

  40. 40

    M. T. Hyvonen, K. Oorni, P. T. Kovanen, and M. Ala-Korpela, Biophys. J. 80, 565 (2001).

    CAS  Google Scholar 

  41. 41

    I. Muegge, Med. Res. Rev. 23, 302 (2003).

    CAS  Google Scholar 

  42. 42

    D. Bernard, A. Coop, and A. D. Mackerell, J. Med. Chem. 48, 7773 (2005).

    CAS  Google Scholar 

  43. 43

    H. F. Chen, Chem. Biol. Drug Des. 71, 434 (2008).

    CAS  Google Scholar 

  44. 44

    B. Fischer, K. Fukuzawa, and W. Wenzel, Proteins 70, 1264 (2008).

    CAS  Google Scholar 

  45. 45

    B. Waszkowycz, Drug Discovery Today 13, 219 (2008).

    CAS  Google Scholar 

  46. 46

    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education, Harlow, UK, 1996), pp. 131–206.

    Google Scholar 

  47. 47

    D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).

    CAS  Google Scholar 

  48. 48

    B. Ni, K. H. Lee, and S. B. Sinnott, J. Phys.: Condens. Matter 16, 7261 (2004).

    CAS  Google Scholar 

  49. 49

    A. Liu and S. J. Stuart, J. Comput. Chem. 29, 601 (2008).

    CAS  Google Scholar 

  50. 50

    S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, J. S. Profeta, and P. Weiner, J. Am. Chem. Soc. 106, 765 (1984).

    CAS  Google Scholar 

  51. 51

    W. D. Cornell et al., J. Am. Chem. Soc. 117, 5179 (1995).

    CAS  Google Scholar 

  52. 52

    52 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem. 4, 187 (1983).

    CAS  Google Scholar 

  53. 53

    A. D. J. MacKerell, B. Brooks, C. L. I. Brooks, L. Nilsson, B. Roux, Y. Won, and M. Karplus, Encyclopedia of Computational Chemistry (Wiley, New York, 1998), pp. 271–277.

    Google Scholar 

  54. 54

    W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).

    CAS  Google Scholar 

  55. 55

    G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem. B 105, 6474 (2001).

    CAS  Google Scholar 

  56. 56

    W. F. van Gunsteren, X. Daura, and A. E. Mark, Encyclopedia of Compuational Chemistry, (Wiley, New York, 1998) Vol. 2, pp. 1211–1216.

    Google Scholar 

  57. 57

    W. R. P. Scott et al., J. Phys. Chem. A 103, 3596 (1999).

    CAS  Google Scholar 

  58. 58

    N. L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977).

    CAS  Google Scholar 

  59. 59

    N. L. Allinger, Y. H. Yuh, and J. H. Lii, J. Am. Chem. Soc. 111, 8551 (1989).

    CAS  Google Scholar 

  60. 60

    N. L. Allinger, K. Chen, and L. H. Lii, J. Comput. Chem. 17, 642 (1996).

    CAS  Google Scholar 

  61. 61

    M. J. Hwang, T. P. Stockfisch, and A. T. Hagler, J. Am. Chem. Soc. 116, 2515 (1994).

    CAS  Google Scholar 

  62. 62

    A. Soldera, Polymer 43, 4269 (2002).

    CAS  Google Scholar 

  63. 63

    J. Blomqvist, Polymer 42, 3515 (2001).

    CAS  Google Scholar 

  64. 64

    S. Lee, H. Y. Jeong, and H. Lee, Comput. Theor. Polym. Sci. 11, 219 (2001).

    CAS  Google Scholar 

  65. 65

    S. W. Bunte and H. Sun, J. Phys. Chem. B 104, 2477 (2000).

    CAS  Google Scholar 

  66. 66

    M. J. McQuaid, H. Sun, and D. Rigby, J. Comput. Chem. 25, 61 (2004).

    CAS  Google Scholar 

  67. 67

    H. Sun, J. Phys. Chem. B 102, 7338 (1998).

    CAS  Google Scholar 

  68. 68

    A. D. MacKerell, J. Comput. Chem. 25, 1584 (2004).

    CAS  Google Scholar 

  69. 69

    D. Yin and A. D. MacKerell, Jr., J. Comput. Chem. 19, 334 (1998).

    CAS  Google Scholar 

  70. 70

    S. W. Rick and S. J. Stuart, Reviews in Computational Chemistry (Wiley, New York, 2002), pp. 89–146.

    Google Scholar 

  71. 71

    D. P. Geerke and W. F. van Gunsteren, Mol. Phys. 105, 1861 (2007).

    CAS  Google Scholar 

  72. 72

    F. Paesani, S. Iuchi, and G. A. Voth, J. Chem. Phys. 127, 074506 (2007).

    Google Scholar 

  73. 73

    A. Warshel, M. Kato, and A. V. Pisliakov, J. Chem. Theory Comput. 3, 2034 (2007).

    CAS  Google Scholar 

  74. 74

    G. A. Kaminski, H. A. Stern, B. J. Berne, R. A. Friesner, Y. X. X. Cao, R. B. Murphy, R. H. Zhou, and T. A. Halgren, J. Comput. Chem. 23, 1515 (2002).

    CAS  Google Scholar 

  75. 75

    C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, J. Comput. Chem. 25, 1656 (2004).

    CAS  Google Scholar 

  76. 76

    V. P. Raut, M. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

    CAS  Google Scholar 

  77. 77

    V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 22, 2402 (2006).

    CAS  Google Scholar 

  78. 78

    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).

    CAS  Google Scholar 

  79. 79

    V. N. Vernekar and R. A. Latour, Mater. Res. Innovations 9, 337 (2005).

    CAS  Google Scholar 

  80. 80

    Y. Wei and R. A. Latour, Langmuir 24, 6721 (2008).

    CAS  Google Scholar 

  81. 81

    F. Wang, S. J. Stuart, and R. A. Latour, BioInterphases 3, 9 (2008).

    Google Scholar 

  82. 82

    A. Glattli, X. Daura, and W. F. van Gunsteren, J. Chem. Phys. 116, 9811 (2002).

    CAS  Google Scholar 

  83. 83

    P. Mark and L. Nilsson, J. Phys. Chem. A 105, 9954 (2001).

    CAS  Google Scholar 

  84. 84

    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    CAS  Google Scholar 

  85. 85

    W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985).

    CAS  Google Scholar 

  86. 86

    W. L. Jorgensen and C. Jenson, J. Comput. Chem. 19, 1179 (1998).

    CAS  Google Scholar 

  87. 87

    H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004).

    CAS  Google Scholar 

  88. 88

    H. W. Horn, W. C. Swope, and J. W. Pitera, J. Chem. Phys. 123, 194504 (2005).

    Google Scholar 

  89. 89

    M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 114, 363 (2001).

    CAS  Google Scholar 

  90. 90

    S. W. Rick, S. J. Stuart, J. S. Bader, and B. J. Berne, J. Mol. Liq. 65-66, 31 (1995).

    Google Scholar 

  91. 91

    R. Garemyr and A. Elofsson, Proteins 37, 417 (1999).

    CAS  Google Scholar 

  92. 92

    CRC Handbook of Chemistry and Physic, 67th ed. (CRC, Boca Rotan, FL, 1986–1987), p. E-56.

  93. 93

    J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, CA, 1992), p. 41.

    Google Scholar 

  94. 94

    M. Schaefer, C. Bartels, and M. Karplus, Theor. Chem. Acc. 101, 194 (1999).

    CAS  Google Scholar 

  95. 95

    K. A. Sharp and B. Honig, J. Phys. Chem. 94, 7684 (1990).

    CAS  Google Scholar 

  96. 96

    C. Bertonati, B. Honig, and E. Alexov, Biophys. J. 92, 1891 (2007).

    CAS  Google Scholar 

  97. 97

    W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990).

    CAS  Google Scholar 

  98. 98

    B. N. Dominy and C. L. Brooks III, J. Phys. Chem. B 103, 3765 (1999).

    CAS  Google Scholar 

  99. 99

    D. Bashford and D. A. Case, Annu. Rev. Phys. Chem. 51, 129 (2000).

    CAS  Google Scholar 

  100. 100

    M. Feig and C. L. Brooks III, Curr. Opin. Struct. Biol. 14, 217 (2004).

    CAS  Google Scholar 

  101. 101

    M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, and C. L. Brooks, J. Comput. Chem. 25, 265 (2004).

    CAS  Google Scholar 

  102. 102

    R. Zhou and B. J. Berne, Proc. Natl. Acad. Sci. U.S.A. 99, 12777 (2002).

    CAS  Google Scholar 

  103. 103

    D. Sitkoff, K. A. Sharp, and B. Honig, J. Phys. Chem. 98, 1978 (1994).

    CAS  Google Scholar 

  104. 104

    D. Qiu, P. S. Shenkin, F. P. Hollinger, and W. C. Still, J. Phys. Chem. A 101, 3005 (1997).

    CAS  Google Scholar 

  105. 105

    Y. Sun and R. A. Latour, J. Comput. Chem. 27, 1908 (2006).

    CAS  Google Scholar 

  106. 106

    Y. Sun, B. N. Dominy, and R. A. Latour, J. Comput. Chem. 28, 1883 (2007).

    CAS  Google Scholar 

  107. 107

    D. A. McQuarrie, Statistical Thermodynamics (University Science Books, Mill Valley, CA, 1973), pp. 35–47.

    Google Scholar 

  108. 108

    S. C. Harvey and M. Prabhakaran, J. Phys. Chem. 91, 4799 (1987).

    CAS  Google Scholar 

  109. 109

    B. Roux, Comput. Phys. Commun. 91, 275 (1995).

    CAS  Google Scholar 

  110. 110

    M. Mezei, J. Comput. Phys. 68, 237 (1987).

    Google Scholar 

  111. 111

    C. Bartels and M. Karplus, J. Phys. Chem. B 102, 865 (1998).

    CAS  Google Scholar 

  112. 112

    C. Bartels and M. Karplus, J. Comput. Chem. 18, 1450 (1997).

    CAS  Google Scholar 

  113. 113

    T. C. Beutler and W. F. Vangunsteren, J. Chem. Phys. 100, 1492 (1994).

    CAS  Google Scholar 

  114. 114

    S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).

    CAS  Google Scholar 

  115. 115

    S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. Chem. 16, 1339 (1995).

    CAS  Google Scholar 

  116. 116

    E. Gallicchio, M. Andrec, A. K. Felts, and R. M. Levy, J. Phys. Chem. B 109, 6722 (2005).

    CAS  Google Scholar 

  117. 117

    Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).

    CAS  Google Scholar 

  118. 118

    A. E. Garcia and K. Y. Sanbonmatsu, Proteins 42, 345 (2001).

    CAS  Google Scholar 

  119. 119

    U. H. E. Hansmann, Chem. Phys. Lett. 281, 140 (1997).

    CAS  Google Scholar 

  120. 120

    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education, Harlow, UK, 1996), pp. 407–408.

    Google Scholar 

  121. 121

    A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001).

    CAS  Google Scholar 

  122. 122

    Y. Okamoto, J. Mol. Graphics Modell. 22, 425 (2004).

    CAS  Google Scholar 

  123. 123

    A. Okur, L. Wickstrom, M. Layten, R. Geney, K. Song, V. Hornak, and C. Simmerling, J. Chem. Theory Comput. 2, 420 (2006).

    CAS  Google Scholar 

  124. 124

    A. Okur, D. R. Roe, G. L. Cui, V. Hornak, and C. Simmerling, J. Chem. Theory Comput. 3, 557 (2007).

    CAS  Google Scholar 

  125. 125

    X. F. Li, C. P. O’Brien, G. Collier, N. A. Vellore, F. Wang, R. A. Latour, D. A. Bruce, and S. J. Stuart, J. Chem. Phys. 127, 164116 (2007).

    Google Scholar 

  126. 126

    H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. Phys. 116, 9058 (2002).

    CAS  Google Scholar 

  127. 127

    R. Affentranger, I. Tavernelli, and E. E. Di Iorio, J. Chem. Theory Comput. 2, 217 (2006).

    CAS  Google Scholar 

  128. 128

    V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 21, 1629 (2005).

    CAS  Google Scholar 

  129. 129

    J. Ludwig and D. G. Vlachos, J. Chem. Phys. 127, 154716 (2007).

    Google Scholar 

  130. 130

    F. Ramondo, L. Bencivenni, R. Caminiti, A. Pieretti, and L. Gontrani, Phys. Chem. Chem. Phys. 9, 2206 (2007).

    CAS  Google Scholar 

  131. 131

    J. L. Li, R. Car, C. Tang, and N. S. Wingreen, Proc. Natl. Acad. Sci. U.S.A. T104, 2626 (2007).

    Google Scholar 

  132. 132

    A. Matsuura, H. Sato, H. Houjou, S. Saito, T. Hayashi, and M. Sakurai, J. Comput. Chem. 27, 1623 (2006).

    CAS  Google Scholar 

  133. 133

    J. Berges, G. Rickards, A. Rauk, and C. Houee-Levin, Chem. Phys. Lett. 421, 63 (2006).

    CAS  Google Scholar 

  134. 134

    D. Riccardi, P. Schaefer, and Q. Cui, J. Phys. Chem. B 109, 17715 (2005).

    CAS  Google Scholar 

  135. 135

    J. W. Chu, S. Izveko, and G. A. Voth, Mol. Simul. 32, 211 (2006).

    CAS  Google Scholar 

  136. 136

    J. J. de Pablo and W. A. Curtin, MRS Bull. 32, 905 (2007).

    Google Scholar 

  137. 137

    J. Zhou, I. F. Thorpe, S. Izvekov, and G. A. Voth, Biophys. J. 92, 4289 (2007).

    CAS  Google Scholar 

  138. 138

    H. J. C. Berendsen, D. Vanderspoel, and R. Vandrunen, Comput. Phys. Commun. 91, 43 (1995).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Latour, R.A. Molecular simulation of protein-surface interactions: Benefits, problems, solutions, and future directions (Review). Biointerphases 3, FC2–FC12 (2008). https://doi.org/10.1116/1.2965132

Download citation