Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Surface plasmon optical study of the interfacial phase transition of elastinlike polypeptide grafted on gold

Article metrics

Abstract

The conformational changes in elastinlike polypeptides (ELPs) grafted to a solid/solution interface via different architectures were studied using surface plasmon resonance spectroscopy and surface plasmon field-enhanced fluorescence spectroscopy (SPFS). SPFS provides a simple and convenient optical method to study the influence of the grafting method and the graft density on the conformational changes in ELPs at the solid-solution interface as a function of environmental variables. A typical response of the ELP, consistent with its stimuli responsiveness, was a gradual collapse upon increasing the ionic strength; this effect was inversely correlated with the surface graft density of the ELP.

References

  1. 1

    D. E. Meyer and A. Chilkoti, Biomacromolecules 3, 357 (2002).

  2. 2

    K. Trabbic-Carlson, L. A. Setton, and A. Chilkoti, Biomacromolecules 4, 572 (2003).

  3. 3

    J. A. Hubbell, Curr. Opin. Biotechnol. 10, 123 (1999).

  4. 4

    S. E. Sakiyama-Elbert and J. A. Hubbell, Annu. Rev. Mater. Res. 31, 183 (2001).

  5. 5

    R. Langer, Nature (London) 392, 5 (1998).

  6. 6

    H. Kanazawa, Y. Matsushima, and T. Okano, Adv. Chromatogr. 41, 311 (2001).

  7. 7

    P. S. Stayton, T. Shimoboji, C. Long, A. Chilkoti, G. Chen, J. M. Harris, and A. S. Hoffman, Nature (London) 378, 472 (1995).

  8. 8

    H. Betre, L. A. Setton, D. E. Meyer, and A. Chilkoti, Biomacromolecules 3, 910 (2002).

  9. 9

    S. Fujishige, K. Kubota, and I. Ando, J. Phys. Chem. 93, 3311 (1989).

  10. 10

    D. E. Meyer and A. Chilkoti, Biomacromolecules 5, 846 (2004).

  11. 11

    M. Miao, C. M. Bellingham, R. J. Stahl, E. E. Sitarz, C. J. Lane, and F. W. Keeley, J. Biol. Chem. 278, 48553 (2003).

  12. 12

    K. Kontturi, S. Mafe, J. A. Manyanares, B. L. Svarfvar, and P. Viinikka, Macromolecules 29, 5740 (1996).

  13. 13

    R. A. Siegel and B. A. Firestone, Macromolecules 21, 3254 (1988).

  14. 14

    I. C. Kwon, Y. H. Bae, and S. W. Kim, Nature (London) 354, 291 (1991).

  15. 15

    D. Kuckling, I. G. Ivanova, H. J. P. Adler, and T. Wolff, Polymer 43, 1813 (2002).

  16. 16

    J. H. Holtz and S. A. Asher, Nature (London) 389, 829 (1997).

  17. 17

    T. Miyata, N. Asami, and T. Uragami, Nature (London) 399, 766 (1999).

  18. 18

    N. Nath and A. Chilkoti, J. Am. Chem. Soc. 123, 8197 (2001).

  19. 19

    J. Hyun, W. K. Lee, N. Nath, A. Chilkoti, and S. Zauscher, J. Am. Chem. Soc. 126, 7330 (2004).

  20. 20

    D. C. Chow, M. R. Dreher, K. Trabbic-Carlson, and A. Chilkoti, Biotechnol. Prog. 22, 638 (2006).

  21. 21

    D. E. Meyer and A. Chilkoti, Nat. Biotechnol. 17, 1112 (1999).

  22. 22

    See http://probes.invitrogen.com, Chap. 1; http://probes.invitrogen.com/handbook/sections/0100.html, the handbook.

  23. 23

    D. Y. Furgeson, M. R. Dreher, and A. Chilkoti, J. Controlled Release 110, 362 (2006).

  24. 24

    S. Löfås and B. J. Johnsson, J. Chem. Soc., Chem. Commun. 1990, 1526.

  25. 25

    W. Frey, D. E. Meyer, and A. Chilkoti, Langmuir 19, 1641 (2003).

  26. 26

    T. Liebermann and W. Knoll, Colloids Surf., A 171, 115 (2000).

  27. 27

    R. G. Chapman, E. Ostuni, L. Yan, and G. M. Whitesides, Langmuir 16, 6927 (2000).

  28. 28

    P. B. Garland, Q. Rev. Biophys. 29, 91 (1996).

  29. 29

    W. Knoll, H. Park, E. Sinner, D. Yao, and F. Yu, Surf. Sci. 570, 30 (2004).

  30. 30

    K. Vasilev, W. Knoll, and M. Kreitera, J. Chem. Phys. 120, 3439 (2004).

  31. 31

    E. Reimhult, C. Larsson, B. Kasemo, and F. Hook, Anal. Chem. 76, 7211 (2004).

  32. 32

    F. Yu, B. Persson, S. Lofas, and W. Knoll, J. Am. Chem. Soc. 126, 8902 (2004).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article