Skip to main content

Advertisement

Journal for Biophysical Chemistry

Biointerphases Cover Image

Electrochemical switching of the flavoprotein dodecin at gold surfaces modified by flavin-DNA hybrid linkers

Article metrics

  • 433 Accesses

  • 13 Citations

Abstract

Dodecin from Halobacterium salinarum is a dodecameric, hollow-spherical protein, which unspecifically adopts flavin molecules. Reduction of flavin dodecin holocomplexes induces dissociation into apododecin and free flavin. Unspecific binding and dissociation upon reduction were used as key properties to construct an electrochemically switchable surface, which was able to bind and release dodecin apoprotein depending on the applied potential. A flavin modified electrode surface (electrode-DNA-flavin) was generated by direct adsorption of double stranded DNA (ds-DNA) equipped with flavin and disulfide modifications at opposite ends. While the disulfide functionality enabled anchoring the ds-DNA at the gold surface, the flavin exposed at the surface served as the redox-active dodecin docking site. The structures of protein and flavin-DNA hybrid ligands were optimized and characterized by x-ray structural analysis of the holocomplexes. By surface plasmon resonance (SPR) spectroscopy, the adsorption of flavin modified DNA as well as the binding and the electrochemically induced release of dodecin apoprotein could be shown. When the surface immobilization protocol was changed from direct immobilization of the modified ds-DNA to a protocol, which included the hybridization of flavin and thiol modified DNA at the surface, the resulting monolayer was electrochemically inactive. A possible explanation for the strong influence of the surface immobilization protocol on addressing dodecin by the applied potential is that electron transfer is rather mediated by defects in the monolayer than modified ds-DNA.

References

  1. 1

    B. Bieger, L. O. Essen, and D. Oesterhelt, Structure (London) 11, 375 (2003).

  2. 2

    M. Grininger, F. Seiler, K. Zeth, and D. Oesterhelt, J. Mol. Biol. 364, 561 (2006).

  3. 3

    M. Grininger, K. Zeth, and D. Oesterhelt, J. Mol. Biol. 357, 842 (2006).

  4. 4

    D. Zhong and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 98, 11867 (2001).

  5. 5

    B. Meissner, E. Schleicher, S. Weber, and L.-O. Essen, J. Biol. Chem. 282, 33142 (2007).

  6. 6

    G. Nöll, E. Kozma, R. Grandori, J. Carey, T. Schoedl, G. Hauska, and J. Daub, Langmuir 22, 2378 (2006).

  7. 7

    O. Dym and D. Eisenberg, Protein Sci. 10, 1712 (2001).

  8. 8

    A. Lostao, M. El Harrous, F. Daoudi, A. Romero, A. Parody-Morreale, and J. Sancho, J. Biol. Chem. 275, 9518 (2000).

  9. 9

    F. Patolsky, Y. Weizmann, and I. Willner, Angew. Chem., Int. Ed. 43, 2113 (2004).

  10. 10

    J. J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter, and D. B. Hibbert, J. Am. Chem. Soc. 125, 9006 (2003).

  11. 11

    C. Wang, A. S. Batsanov, and M. R. Bryce, J. Org. Chem. 71, 108 (2006).

  12. 12

    C. Wang, A. S. Batsanov, M. R. Bryce, and I. Sage, Org. Lett. 6, 2181 (2004).

  13. 13

    Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, Science 299, 1877 (2003).

  14. 14

    G. Hartwich, D. J. Caruana, T. de Lumley-Woodyear, Y. Wu, C. N. Campbell, and A. Heller, J. Am. Chem. Soc. 121, 10803 (1999).

  15. 15

    M. Inouye, R. Ikeda, M. Takase, T. Tsuri, and J. Chiba, Proc. Natl. Acad. Sci. U.S.A. 102, 11606 (2005).

  16. 16

    S. O. Kelley, N. M. Jackson, M. G. Hill, and J. K. Barton, Angew. Chem., Int. Ed. 38, 941 (1999).

  17. 17

    T. G. Drummond, M. G. Hill, and J. K. Barton, J. Am. Chem. Soc. 126, 15010 (2004).

  18. 18

    Y.-T. Long, C.-Z. Li, T. C. Sutherland, M. H. Chahma, J. S. Lee, and H.-B. Kraatz, J. Am. Chem. Soc. 125, 8724 (2003).

  19. 19

    E. L. S. Wong and J. J. Gooding, J. Am. Chem. Soc. 129, 8950 (2007).

  20. 20

    E. L. S. Wong and J. J. Gooding, Anal. Chem. 78, 2138 (2006).

  21. 21

    S. O. Kelley, E. M. Boon, J. K. Barton, N. M. Jackson, and M. G. Hill, Nucleic Acids Res. 27, 4830 (1999).

  22. 22

    T. G. Drummond, M. G. Hill, and J. K. Barton, Nat. Biotechnol. 21, 1192 (2003).

  23. 23

    T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997).

  24. 24

    R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, J. Am. Chem. Soc. 120, 9787 (1998).

  25. 25

    M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven, M. W. Wu, and L. L. Sohn, Nano Lett. 2, 187 (2002).

  26. 26

    C. Dekker and M. A. Ratner, Phys. World 14, 29 (2001).

  27. 27

    C. Gomez-Navarro, F. Moreno-Herrero, P. J. De Pablo, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Proc. Natl. Acad. Sci. U.S.A. 99, 8484 (2002).

  28. 28

    K. Keren, U. Sivan, and E. Braun, in Bioelectronics: From Theory to Applications, edited by I. Willner and E. Katz (Wiley, New York, 2005), p. 265.

  29. 29

    H.-A. Wagenknecht, Angew. Chem., Int. Ed. 42, 2454 (2003).

  30. 30

    T. Ito, A. Kondo, S. Terada, and S.-I. Nishimoto, J. Am. Chem. Soc. 128, 10934 (2006).

  31. 31

    A. Manetto, S. Breeger, C. Chatgilialoglu, and T. Carell, Angew. Chem., Int. Ed. 45, 318 (2006).

  32. 32

    L. Wachter, J. A. Jablonski, and K. L. Ramachandran, Nucleic Acids Res. 14, 7985 (1986).

  33. 33

    P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roessler, K. J. Falk, R. P. Steer, and J. S. Lee, J. Mol. Biol., 294, 477 (1999).

  34. 34

    Y. Wang, N. Farrell, and J. D. Burgess, J. Am. Chem. Soc. 123, 5576 (2001).

  35. 35

    A. B. Steel, R. L. Levicky, T. M. Herne, and M. J. Tarlov, Biophys. J. 79, 975 (2000).

  36. 36

    K. A. Peterlinz, R. M. Georgiadis, T. M. Herne, and M. J. Tarlov, J. Am. Chem. Soc. 119, 3401 (1997).

  37. 37

    K. Wang, C. Goyer, A. Anne, and C. Demaille, J. Phys. Chem. B 111, 6051 (2007).

  38. 38

    A. Anne, C. Bonnaudat, C. Demaille, and K. Wang, J. Am. Chem. Soc. 129, 2734 (2007).

  39. 39

    T. Liu and J. K. Barton, J. Am. Chem. Soc. 127, 10160 (2005).

  40. 40

    H. C. M. Yau, H. L. Chan, and M. Yang, Biosens. Bioelectron. 18, 873 (2003).

  41. 41

    K. J. Stine, D. M. Andrauskas, A. R. Khan, P. Forgo, V. T. D’Souza, J. Liu, and R. M. Friedman, J. Electroanal. Chem. 472, 147 (1999).

  42. 42

    C. Nogues, S. R. Cohen, S. S. Daube, and R. Naaman, Phys. Chem. Chem. Phys. 6, 4459 (2004).

  43. 43

    R. Levicky and A. Horgan, Trends Biotechnol. 23, 143 (2005).

  44. 44

    A. Anne, A. Bouchardon, and J. Moiroux, J. Am. Chem. Soc. 125, 1112 (2003).

  45. 45

    H. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, and L. J. Whitman, J. Am. Chem. Soc. 125, 9014 (2003).

  46. 46

    F. Shao, K. Augustyn, and J. K. Barton, J. Am. Chem. Soc. 127, 17445 (2005).

  47. 47

    C. Wagner and H.-A. Wagenknecht, Chem.-Eur. J. 11, 1871 (2005).

  48. 48

    F. Leng, R. Savkur, I. Fokt, T. Przewloka, W. Priebe, and J. B. Chaires, J. Am. Chem. Soc. 118, 4731 (1996).

  49. 49

    E. M. Boon, N. M. Jackson, M. D. Wightman, S. O. Kelley, M. G. Hill, and J. K. Barton, J. Phys. Chem. B 107, 11805 (2003).

  50. 50

    A. Anne and C. Demaille, J. Am. Chem. Soc. 128, 542 (2006).

  51. 51

    B. Bornemann and A. Marx, Bioorg Med. Chem. 14, 6235 (2006).

  52. 52

    B. Willner and I. Willner, in Bioelectronics: From Theory to Applications, edited by I. Willner and E. Katz (Wiley, New York, 2005), p. 35.

  53. 53

    See EPAPS Document No. E-BJIOBN-3-003803 for further experimental details and a description of the experimental setup. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Download references

Author information

Additional information

Authors contributed equally.

Rights and permissions

Reprints and Permissions

About this article