Skip to content


Journal for Biophysical Chemistry

Biointerphases Cover Image
  • Open Access

Electrochemical switching of the flavoprotein dodecin at gold surfaces modified by flavin-DNA hybrid linkers

  • 1,
  • 2,
  • 1,
  • 1 and
  • 1

  • Received: 14 May 2008
  • Accepted: 7 July 2008
  • Published:


Dodecin from Halobacterium salinarum is a dodecameric, hollow-spherical protein, which unspecifically adopts flavin molecules. Reduction of flavin dodecin holocomplexes induces dissociation into apododecin and free flavin. Unspecific binding and dissociation upon reduction were used as key properties to construct an electrochemically switchable surface, which was able to bind and release dodecin apoprotein depending on the applied potential. A flavin modified electrode surface (electrode-DNA-flavin) was generated by direct adsorption of double stranded DNA (ds-DNA) equipped with flavin and disulfide modifications at opposite ends. While the disulfide functionality enabled anchoring the ds-DNA at the gold surface, the flavin exposed at the surface served as the redox-active dodecin docking site. The structures of protein and flavin-DNA hybrid ligands were optimized and characterized by x-ray structural analysis of the holocomplexes. By surface plasmon resonance (SPR) spectroscopy, the adsorption of flavin modified DNA as well as the binding and the electrochemically induced release of dodecin apoprotein could be shown. When the surface immobilization protocol was changed from direct immobilization of the modified ds-DNA to a protocol, which included the hybridization of flavin and thiol modified DNA at the surface, the resulting monolayer was electrochemically inactive. A possible explanation for the strong influence of the surface immobilization protocol on addressing dodecin by the applied potential is that electron transfer is rather mediated by defects in the monolayer than modified ds-DNA.


Authors’ Affiliations

Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
Department of Analytical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden


  1. B. Bieger, L. O. Essen, and D. Oesterhelt, Structure (London) 11, 375 (2003).View ArticleGoogle Scholar
  2. M. Grininger, F. Seiler, K. Zeth, and D. Oesterhelt, J. Mol. Biol. 364, 561 (2006).View ArticleGoogle Scholar
  3. M. Grininger, K. Zeth, and D. Oesterhelt, J. Mol. Biol. 357, 842 (2006).View ArticleGoogle Scholar
  4. D. Zhong and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 98, 11867 (2001).View ArticleGoogle Scholar
  5. B. Meissner, E. Schleicher, S. Weber, and L.-O. Essen, J. Biol. Chem. 282, 33142 (2007).View ArticleGoogle Scholar
  6. G. Nöll, E. Kozma, R. Grandori, J. Carey, T. Schoedl, G. Hauska, and J. Daub, Langmuir 22, 2378 (2006).View ArticleGoogle Scholar
  7. O. Dym and D. Eisenberg, Protein Sci. 10, 1712 (2001).View ArticleGoogle Scholar
  8. A. Lostao, M. El Harrous, F. Daoudi, A. Romero, A. Parody-Morreale, and J. Sancho, J. Biol. Chem. 275, 9518 (2000).View ArticleGoogle Scholar
  9. F. Patolsky, Y. Weizmann, and I. Willner, Angew. Chem., Int. Ed. 43, 2113 (2004).View ArticleGoogle Scholar
  10. J. J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter, and D. B. Hibbert, J. Am. Chem. Soc. 125, 9006 (2003).View ArticleGoogle Scholar
  11. C. Wang, A. S. Batsanov, and M. R. Bryce, J. Org. Chem. 71, 108 (2006).View ArticleGoogle Scholar
  12. C. Wang, A. S. Batsanov, M. R. Bryce, and I. Sage, Org. Lett. 6, 2181 (2004).View ArticleGoogle Scholar
  13. Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, Science 299, 1877 (2003).View ArticleGoogle Scholar
  14. G. Hartwich, D. J. Caruana, T. de Lumley-Woodyear, Y. Wu, C. N. Campbell, and A. Heller, J. Am. Chem. Soc. 121, 10803 (1999).View ArticleGoogle Scholar
  15. M. Inouye, R. Ikeda, M. Takase, T. Tsuri, and J. Chiba, Proc. Natl. Acad. Sci. U.S.A. 102, 11606 (2005).View ArticleGoogle Scholar
  16. S. O. Kelley, N. M. Jackson, M. G. Hill, and J. K. Barton, Angew. Chem., Int. Ed. 38, 941 (1999).View ArticleGoogle Scholar
  17. T. G. Drummond, M. G. Hill, and J. K. Barton, J. Am. Chem. Soc. 126, 15010 (2004).View ArticleGoogle Scholar
  18. Y.-T. Long, C.-Z. Li, T. C. Sutherland, M. H. Chahma, J. S. Lee, and H.-B. Kraatz, J. Am. Chem. Soc. 125, 8724 (2003).View ArticleGoogle Scholar
  19. E. L. S. Wong and J. J. Gooding, J. Am. Chem. Soc. 129, 8950 (2007).View ArticleGoogle Scholar
  20. E. L. S. Wong and J. J. Gooding, Anal. Chem. 78, 2138 (2006).View ArticleGoogle Scholar
  21. S. O. Kelley, E. M. Boon, J. K. Barton, N. M. Jackson, and M. G. Hill, Nucleic Acids Res. 27, 4830 (1999).View ArticleGoogle Scholar
  22. T. G. Drummond, M. G. Hill, and J. K. Barton, Nat. Biotechnol. 21, 1192 (2003).View ArticleGoogle Scholar
  23. T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997).View ArticleGoogle Scholar
  24. R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, J. Am. Chem. Soc. 120, 9787 (1998).View ArticleGoogle Scholar
  25. M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven, M. W. Wu, and L. L. Sohn, Nano Lett. 2, 187 (2002).View ArticleGoogle Scholar
  26. C. Dekker and M. A. Ratner, Phys. World 14, 29 (2001).Google Scholar
  27. C. Gomez-Navarro, F. Moreno-Herrero, P. J. De Pablo, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Proc. Natl. Acad. Sci. U.S.A. 99, 8484 (2002).View ArticleGoogle Scholar
  28. K. Keren, U. Sivan, and E. Braun, in Bioelectronics: From Theory to Applications, edited by I. Willner and E. Katz (Wiley, New York, 2005), p. 265.View ArticleGoogle Scholar
  29. H.-A. Wagenknecht, Angew. Chem., Int. Ed. 42, 2454 (2003).View ArticleGoogle Scholar
  30. T. Ito, A. Kondo, S. Terada, and S.-I. Nishimoto, J. Am. Chem. Soc. 128, 10934 (2006).View ArticleGoogle Scholar
  31. A. Manetto, S. Breeger, C. Chatgilialoglu, and T. Carell, Angew. Chem., Int. Ed. 45, 318 (2006).View ArticleGoogle Scholar
  32. L. Wachter, J. A. Jablonski, and K. L. Ramachandran, Nucleic Acids Res. 14, 7985 (1986).View ArticleGoogle Scholar
  33. P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roessler, K. J. Falk, R. P. Steer, and J. S. Lee, J. Mol. Biol., 294, 477 (1999).View ArticleGoogle Scholar
  34. Y. Wang, N. Farrell, and J. D. Burgess, J. Am. Chem. Soc. 123, 5576 (2001).View ArticleGoogle Scholar
  35. A. B. Steel, R. L. Levicky, T. M. Herne, and M. J. Tarlov, Biophys. J. 79, 975 (2000).View ArticleGoogle Scholar
  36. K. A. Peterlinz, R. M. Georgiadis, T. M. Herne, and M. J. Tarlov, J. Am. Chem. Soc. 119, 3401 (1997).View ArticleGoogle Scholar
  37. K. Wang, C. Goyer, A. Anne, and C. Demaille, J. Phys. Chem. B 111, 6051 (2007).View ArticleGoogle Scholar
  38. A. Anne, C. Bonnaudat, C. Demaille, and K. Wang, J. Am. Chem. Soc. 129, 2734 (2007).View ArticleGoogle Scholar
  39. T. Liu and J. K. Barton, J. Am. Chem. Soc. 127, 10160 (2005).View ArticleGoogle Scholar
  40. H. C. M. Yau, H. L. Chan, and M. Yang, Biosens. Bioelectron. 18, 873 (2003).View ArticleGoogle Scholar
  41. K. J. Stine, D. M. Andrauskas, A. R. Khan, P. Forgo, V. T. D’Souza, J. Liu, and R. M. Friedman, J. Electroanal. Chem. 472, 147 (1999).View ArticleGoogle Scholar
  42. C. Nogues, S. R. Cohen, S. S. Daube, and R. Naaman, Phys. Chem. Chem. Phys. 6, 4459 (2004).View ArticleGoogle Scholar
  43. R. Levicky and A. Horgan, Trends Biotechnol. 23, 143 (2005).View ArticleGoogle Scholar
  44. A. Anne, A. Bouchardon, and J. Moiroux, J. Am. Chem. Soc. 125, 1112 (2003).View ArticleGoogle Scholar
  45. H. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, and L. J. Whitman, J. Am. Chem. Soc. 125, 9014 (2003).View ArticleGoogle Scholar
  46. F. Shao, K. Augustyn, and J. K. Barton, J. Am. Chem. Soc. 127, 17445 (2005).View ArticleGoogle Scholar
  47. C. Wagner and H.-A. Wagenknecht, Chem.-Eur. J. 11, 1871 (2005).View ArticleGoogle Scholar
  48. F. Leng, R. Savkur, I. Fokt, T. Przewloka, W. Priebe, and J. B. Chaires, J. Am. Chem. Soc. 118, 4731 (1996).View ArticleGoogle Scholar
  49. E. M. Boon, N. M. Jackson, M. D. Wightman, S. O. Kelley, M. G. Hill, and J. K. Barton, J. Phys. Chem. B 107, 11805 (2003).View ArticleGoogle Scholar
  50. A. Anne and C. Demaille, J. Am. Chem. Soc. 128, 542 (2006).View ArticleGoogle Scholar
  51. B. Bornemann and A. Marx, Bioorg Med. Chem. 14, 6235 (2006).View ArticleGoogle Scholar
  52. B. Willner and I. Willner, in Bioelectronics: From Theory to Applications, edited by I. Willner and E. Katz (Wiley, New York, 2005), p. 35.View ArticleGoogle Scholar
  53. See EPAPS Document No. E-BJIOBN-3-003803 for further experimental details and a description of the experimental setup. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage ( Scholar


© American Vacuum Society 2008