Skip to main content

Journal for Biophysical Chemistry

Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin

Abstract

Lactoferrin (LF) produced from recombinant technologies can achieve almost identical amino acid sequences and three-dimensional structures to those extracted from mammals, but differences often arise in the carbohydrate chains attached through N-glycosylation, with altered sizes, structures, and chemical nature. We compare the differences in solvation and interfacial adsorption from two samples, human milk lactoferrin (hLF) and recombinant rice lactoferrin (rLF). Lactoferrin is a bilobal protein with a molecular weight of about 80 kD. It has three N-glycosylation sites. Each of the three attached glycan chains on rLF contains seven to eight sugar groups. In comparison, each of the three glycan chains attached to hLF contains 12–13 sugar groups and is twice as long. The rLF meting point in 1 mg/ml aqueous solution (pH 7 phosphate buffer, I=20 mM was 43 °C from dynamic light scattering, compared to 53 °C for hLF, exhibiting the enhanced solvation and stability of hLF due to its longer carbohydrate side chains. Silicon oxide surfaces provided a model substrate for assessment of lactoferrin adsorption and comparison with other proteins. The time dependent interfacial adsorption studied by spectroscopic ellipsometry (SE) was characterized by a fast initial step followed by a slow relaxation process. In addition, the SE results revealed the persistently higher adsorption of rLF, again showing the effect of glycan side chains. In spite of the different adsorbed amounts, neutron reflection revealed similar interfacial structures of the adsorbed protein layers. At the low lactoferrin concentration around 10 mg/l, a flat-on molecular monolayer formed with both LF lobes attached to the SiO2 surface through electrostatic attraction. As the protein concentration increased, a secondary molecular layer further adsorbed to the first one and the attachment was again driven by electrostatic attraction. The intermixing between the globular lobes resulted in the dense packing in the middle 60 Å with some of the lobes projected toward the aqueous bulk solution.

References

  1. D. R. Korb, J. Craig, M. Doughty, J. P. Guillon, G. Smith, and A. Tomlinson, The Tear Film: Structure, Function and Clinical Examination (Butterworth & Heinemann, London, 2002)

    Google Scholar 

  2. A. F. Gachon and E. Lacazette, Br. J. Ophthamol. 82, 453 (1998).

    Article  CAS  Google Scholar 

  3. J. H. Nuijens, P. H. C. van Berkel, and F. L. Schanbacher, J. Mammary Gland Biol. Neoplasia 1, 285 (1996).

    Article  CAS  Google Scholar 

  4. B. Reiter, J. H. Brock, and E. D. Steel, Immunology 28, 83 (1975).

    CAS  Google Scholar 

  5. R. T. Ellison III, T. J. Giehl, and F. F. La, Infect. Immun. 56, 2774 (1988).

    Google Scholar 

  6. L. Sanchez, M. Calvo, and J. H. Brock, Arch. Dis. Child 67, 657 (1992).

    Article  CAS  Google Scholar 

  7. J. R. Zucali, H. E. Broxmeyer, D. Levy, and C. Morse, Blood 74, 1531 (1989).

    CAS  Google Scholar 

  8. M. C. Wahlgren, T. Arnebrant, and M. A. Paulsson, J. Colloid Interface Sci. 158, 46 (1993).

    Article  CAS  Google Scholar 

  9. Q. L. Luo and J. D. Andrade, J. Colloid Interface Sci. 200, 104 (1998).

    Article  CAS  Google Scholar 

  10. B. J. Appelmelk, Y. Q. An, M. Geerts, B. G. Thijs, H. A. de Boer, D. M. MacLaren, J. de Graaff, and J. H. Nuijens, Infect. Immun. 62, 2628 (1994).

    CAS  Google Scholar 

  11. H. A. van Veen, E. J. Geerts, P. H. C. van Berkel, and J. H. Nuijens, Eur. J. Biochem. 271, 678 (2004).

    Article  Google Scholar 

  12. H. Daniell, S. J. Streatfield, and K. Wycoff, Trends Plant Sci. 6, 219 (2001).

    Article  CAS  Google Scholar 

  13. T. Liu, Y. Zhang, and X. Wu, J. Biotechnol. 118, 246 (2005).

    Article  CAS  Google Scholar 

  14. K. Fujiyama, Y. Sakai, R. Misaki, I. Yanagihara, T. Honda, H. Anzai, and T. Seki, Biosci., Biotechnol., Biochem. 68, 2565 (2005).

    Article  Google Scholar 

  15. N. Jenkins and E. M. Curling, Enzyme Microb. Technol. 16, 354 (1994).

    Article  CAS  Google Scholar 

  16. B. F. Anderson, H. M. Baker, E. J. Dodson, G. E. Norris, S. V. Rumball, J. M. Waters, and E. N. Baker, Proc. Natl. Acad. Sci. U.S.A. 84, 1769 (1987).

    Article  CAS  Google Scholar 

  17. N. A. Peterson, V. L. Arcus, B. F. Anderson, J. W. Tweedie, G. B. Jameson, and E. N. Baker, Biochemistry 41, 14167 (2002).

    Article  CAS  Google Scholar 

  18. H. M. Baker, B. F. Anderson, and E. N. Baker, Proc. Natl. Acad. Sci. U.S.A. 100, 3579 (2003).

    Article  CAS  Google Scholar 

  19. H. M. Baker, C. J. Baker, C. A. Smith, and E. N. Baker, JBIC, J. Biol. Inorg. Chem. 5, 692 (2000).

    Article  CAS  Google Scholar 

  20. P. H. van Berkel, H. A. van Veen, M. E. Geerts, H. A. de Boer, and J. H. Nuijens, Biochem. J. 319, 117 (1996).

    Google Scholar 

  21. J. R. Lu, X. Zhao, and M. Yaseen, Curr. Opin. Colloid Interface Sci. 12, 9 (2007).

    Article  CAS  Google Scholar 

  22. J. A. de Feijter, J. benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).

    Article  Google Scholar 

  23. S. Nandi, Y A. Suzuki, J. Huang, D. Yalda, P. Pham, L. Wu, G. Bartley, N. Huang, and B. Lönnerdal, Trends Plant Sci. 163, 713 (2002).

    CAS  Google Scholar 

  24. D. Rachmawati, T. Mori, T. Hosaka, F. Takaiwa, E. Inoue, and H. Anzai, Breed. Sci. 55, 213 (2005).

    Article  CAS  Google Scholar 

  25. See http://www.azonano.com/details.asp?ArticleID1224.

  26. E. Murphy, J. L. Kiddie, J. R. Lu, J. Brewer, and J. Russell, Biomaterials 20, 1501 (1999).

    Article  CAS  Google Scholar 

  27. J. R. Lu, E. M. Lee, and R. K. Thomas, Acta Crystallogr., Sect. A: Found. Crystallogr. A52, 11 (1996).

    Article  CAS  Google Scholar 

  28. J. R. Lu and R. K. Thomas, J. Chem. Soc., Faraday Trans. 94, 995 (1998).

    Article  CAS  Google Scholar 

  29. G. Yakubov, A. Papagiannopoulos, E. Rat, and T. A. Waigh, Biomacromolecules 8, 3791 (2007).

    Article  CAS  Google Scholar 

  30. T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, Langmuir 14, 438 (1998).

    Article  CAS  Google Scholar 

  31. J. R. Lu, T. J. Su, R. K. Thomas, A. R. Rennie, and R. Cubit, J. Colloid Interface Sci. 206, 212 (1998).

    Article  CAS  Google Scholar 

  32. T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).

    Article  CAS  Google Scholar 

  33. T. J. Su, J. R. Lu, R. K. Thomas, and Z. F. Cui, J. Phys. Chem. B 103, 3727 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, F., Zhao, X., Waigh, T.A. et al. Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. Biointerphases 3, FB36–FB43 (2008). https://doi.org/10.1116/1.2965135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1116/1.2965135